added new files 20-05-23

anubhav
Nadesh Seen 2 years ago
commit 6632d78875

53
.gitignore vendored

@ -0,0 +1,53 @@
openwhisk/
dockerSkeleton/
composer/
function_modules/sprocket-decode/*.mp4
function_modules/sprocket-decode/*.avi
note.txt
controlplane/dag1.png
controlplane/*.json
controlplane/action_url.txt
controlplane/dag1.png
controlplane/createDAG.py
function_registration/
function_modules/dummy_*
function_modules/numpy-action
function_modules/sprocket-decode/images
function_modules/sprocket-decode/README.md
function_modules/sprocket-decode/build.txt
function_modules/sprocket-encode/filtered-images
function_modules/sprocket-decode/build.txt
function_modules/sprocket-encode/README.md
function_modules/assemble_images/contoured-images/*
function_modules/assemble_images/edge-detected-images/*
function_modules/assemble_images/contoured-images/
function_modules/assemble_images/edge-detected-images/
function_modules/assemble_images/README.md
function_modules/assemble_images/build.txt
function_modules/contour-finding/contoured-images
function_modules/contour-finding/build.txt
function_modules/contour-finding/README.md
function_modules/edge-detection/edge-detected-images
function_modules/edge-detection/build.txt
function_modules/edge-detection/README.md
function_modules/odd_even_check/build.txt
function_modules/odd_even_check/README.md
function_modules/odd_print/README.md
function_modules/odd_print/build.txt
function_modules/performance-testing
redis-input.json
flask_test.py

@ -0,0 +1,3 @@
AWS_ACCESS_KEY_ID="AKIAYFB773UVZSOAVZN4"
AWS_SECRET_ACCESS_KEY="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"
AWS_REGION="ap-south-1"

@ -16,7 +16,6 @@ from requests.packages.urllib3.exceptions import InsecureRequestWarning
from flask import Flask, request,jsonify,send_file
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
import pymongo
import shutil
import trigger_gateway

@ -0,0 +1,127 @@
{
"name": "odd-even-test",
"dag": [
{
"node_id": "odd-even-action",
"properties":
{
"label": "Odd Even Action",
"primitive": "condition",
"condition":
{
"source":"result",
"operator":"equals",
"target":"even"
},
"next": "",
"branch_1": "even-print-action",
"branch_2": "odd-print-action",
"arguments": {},
"outputs_from":[]
}
},
{
"node_id": "even-print-action",
"properties":
{
"label": "Even Print Action",
"primitive": "parallel",
"condition": {},
"next": ["increment-action","multiply-action"],
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["odd-even-action"]
}
},
{
"node_id": "increment-action",
"properties":
{
"label": "INCREMENT ACTION",
"primitive": "serial",
"condition": {},
"next": "dummy4-action",
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["even-print-action"]
}
},
{
"node_id": "multiply-action",
"properties":
{
"label": "MULTIPLY ACTION",
"primitive": "serial",
"condition": {},
"next": "dummy4-action",
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["even-print-action"]
}
},
{
"node_id": "dummy4-action",
"properties":
{
"label": "Dummy 4",
"primitive": "serial",
"condition":{},
"next": "",
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["increment-action","multiply-action"]
}
},
{
"node_id": "odd-print-action",
"properties":
{
"label": "Odd Print Action",
"primitive": "serial",
"condition":{},
"next": "prime-check-action",
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["odd-even-action"]
}
},
{
"node_id": "prime-check-action",
"properties":
{
"label": "Prime Check Action",
"primitive": "serial",
"condition":{},
"next": "",
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["odd-print-action"]
}
}
]
}

@ -0,0 +1,51 @@
{
"name": "dummy-dag",
"dag": [
{
"node_id": "dummy1-action",
"properties":
{
"label": "Dummy 1 Action",
"primitive": "serial",
"condition":{},
"next": "dummy2-action",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from":[]
}
},
{
"node_id": "dummy2-action",
"properties":
{
"label": "Dummy 2 Action",
"primitive": "serial",
"condition":{},
"next": "dummy3-action",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["dummy1-action"]
}
},
{
"node_id": "dummy3-action",
"properties":
{
"label": "Dummy 3 Action",
"primitive": "serial",
"condition":{},
"next": "",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["dummy1-action","dummy2-action"]
}
}
]
}

@ -0,0 +1,49 @@
{
"name": "toonify",
"dag": [
{
"node_id": "decode-function",
"properties":
{
"label": "Decode Function",
"primitive": "serial",
"condition":{},
"next": "image-bilateral-filter",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from":[]
}
},
{
"node_id": "image-bilateral-filter",
"properties":
{
"label": "Cartoon effect Action",
"primitive": "serial",
"condition":{},
"next": "encode-function",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["decode-function"]
}
},
{
"node_id": "encode-function",
"properties":
{
"label": "Cmobine Images to Video",
"primitive": "serial",
"condition":{},
"next": "",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["image-bilateral-filter"]
}
}
]
}

@ -0,0 +1,49 @@
{
"name": "FaceBlurring",
"dag": [
{
"node_id": "decode-function",
"properties":
{
"label": "Decode Function",
"primitive": "serial",
"condition":{},
"next": "face-detection",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from":[]
}
},
{
"node_id": "face-detection",
"properties":
{
"label": "Detect Face",
"primitive": "serial",
"condition":{},
"next": "image-blur",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["decode-function"]
}
},
{
"node_id": "image-blur",
"properties":
{
"label": "Blur Faces",
"primitive": "serial",
"condition":{},
"next": "",
"branch_1": "",
"branch_2": "",
"arguments": {},
"outputs_from": ["face-detection"]
}
}
]
}

@ -0,0 +1,78 @@
{
"$schema": "http://json-schema.org/anubhavjana/schema#",
"type": "object",
"properties": {
"dag": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {
"type": "string",
"pattern": "^(odd-even-action|even-print-action|odd-print-action|prime-check-action)$"
},
"properties": {
"type": "object",
"properties": {
"label": {
"type": "string",
"pattern": "^(Odd Even Action|Even Print Action|Odd Print Action|Prime Check Action)$"
},
"type": {
"type": "string",
"pattern": "^(conditional|serial|parallel)$"
},
"condition": {
"type": "object",
"properties": {
"source": {
"type": "string",
"enum": ["result"]
},
"operator": {
"type": "string",
"enum": ["equals"]
},
"target": {
"type": "string",
"enum": ["even"]
}
},
"required": ["source", "operator", "target"],
"additionalProperties": false
},
"next": {
"type": "string",
"pattern": "^(prime-check-action|)$"
},
"branch_1": {
"type": "string",
"pattern": "^(even-print-action|)$"
},
"branch_2": {
"type": "string",
"pattern": "^(odd-print-action|)$"
},
"arguments": {
"type": "object",
"properties": {
"number": {
"type": "integer",
"enum": [17]
}
},
"additionalProperties": false
}
},
"required": ["label", "type", "condition", "next", "branch_1", "branch_2", "arguments"],
"additionalProperties": false
}
},
"required": ["id", "properties"],
"additionalProperties": false
}
}
},
"required": ["dag"],
"additionalProperties": false
}

@ -0,0 +1,281 @@
#!/usr/bin/env python3
import sys
import requests
import uuid
import re
import subprocess
import threading
import queue
import redis
from flask import current_app
import pickle
import json
import os
import time
from requests.packages.urllib3.exceptions import InsecureRequestWarning
from flask import Flask, request,jsonify,send_file
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
import pymongo
# app = Flask(__name__)
action_url_mappings = {} #Store action->url mappings
action_properties_mapping = {} #Stores the action name and its corresponding properties
responses = []
queue = []
list_of_func_ids = []
dag_responses = []
x = 10
def preprocess(filename):
with open(filename) as f:
lines = f.readlines()
action_url_list = []
for line in lines:
line = line.replace("\n", "")
line = line.replace("/guest/","")
action_url_list.append(line)
for item in action_url_list:
action_name = item.split(' ')[0]
url = item.split(' ')[1]
action_url_mappings[action_name] = url
def execute_thread(action,redis,url,json):
reply = requests.post(url = url,json=json,verify=False)
list_of_func_ids.append(reply.json()["activation_id"])
redis.set(action+"-output",pickle.dumps(reply.json()))
responses.append(reply.json())
def handle_parallel(queue,redis,action_properties_mapping,parallel_action_list):
thread_list = []
output_list = [] # List to store the output of actions whose outputs are required by downstream operations
for action in parallel_action_list:
action_names = action_properties_mapping[action]["outputs_from"]
next_action = action_properties_mapping[action]["next"]
if(next_action!=""):
if next_action not in queue:
queue.append(next_action)
if(len(action_names)==1): # if only output of one action is required
key = action_names[0]+"-output"
output = pickle.loads(redis.get(key))
action_properties_mapping[action]["arguments"] = output
else:
for item in action_names:
key = item+"-output"
output = pickle.loads(redis.get(key))
output_list.append(output)
action_properties_mapping[action]["arguments"] = output_list
url = action_url_mappings[action]
thread_list.append(threading.Thread(target=execute_thread, args=[action,redis,url,action_properties_mapping[action]["arguments"]]))
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
action_properties_mapping[next_action]["arguments"] = responses
return responses
def create_redis_instance():
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
return r
def get_dag_json(dag_name):
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dags"]
query = {"name":dag_name}
projection = {"_id": 0, "name": 1,"dag":1}
document = mycol.find(query, projection)
data = list(document)
return data
def submit_dag_metadata(dag_metadata):
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dag_metadata"]
try:
cursor = mycol.insert_one(dag_metadata)
# print("OBJECT ID GENERATED",cursor.inserted_id)
data = {"message":"success"}
return json.dumps(data)
except Exception as err:
data = {"message":"failed","reason":err}
return json.dumps(data)
def execute_action(action_name):
script_file = './actions.sh'
subprocess.call(['bash', script_file])
preprocess("action_url.txt")
url = action_url_mappings[action_name]
# print(request.json)
# json_data = json.loads(request.json)
reply = requests.post(url = url,json = request.json,verify=False)
return reply.json()
def execute_dag(dag_name):
print("------------------------------------DAG START-----------------------------------------------")
unique_id = uuid.uuid4()
print("DAG UNIQUE ID----------",unique_id)
dag_metadata={}
dag_metadata["dag_id"] = str(unique_id)
dag_metadata["dag_name"] = dag_name
list_of_func_ids = []
######### Updates the list of action->url mapping ###################
script_file = './actions.sh'
subprocess.call(['bash', script_file])
#####################################################################
preprocess("action_url.txt")
### Create in-memory redis storage ###
redis_instace = create_redis_instance()
#######################################
action_properties_mapping = {} #Stores the action name and its corresponding properties
dag_res = json.loads(json.dumps(get_dag_json(dag_name)))
dag_data = dag_res[0]["dag"]
for dag_item in dag_data:
action_properties_mapping[dag_item["node_id"]] = dag_item["properties"]
flag = 0
for dag_item in dag_data:
if(flag==0): # To indicate the first action in the DAG
queue.append(dag_item["node_id"])
action_properties_mapping[dag_item["node_id"]]["arguments"] = request.json
while(len(queue)!=0):
flag=flag+1
action = queue.pop(0)
print("ACTION DEQUEUED FROM QUEUE : --->",action)
##########################################################
# HANDLE THE ACTION #
##########################################################
if isinstance(action, str):
# if(isinstance(action_properties_mapping[action]['arguments'],list)):
# pass
json_data = action_properties_mapping[action]["arguments"]
url = action_url_mappings[action]
reply = requests.post(url = url,json=json_data,verify=False)
list_of_func_ids.append(reply.json()["activation_id"])
# print("Line 292------------",reply.json()["activation_id"])
redis_instace.set(action+"-output",pickle.dumps(reply.json()))
action_type = action_properties_mapping[action]["primitive"]
if(action_type=="condition"):
branching_action = action_properties_mapping[action]["branch_1"]
alternate_action = action_properties_mapping[action]["branch_2"]
result=reply.json()["result"]
condition_op = action_properties_mapping[action]["condition"]["operator"]
if(condition_op=="equals"):
if(isinstance(action_properties_mapping[action]["condition"]["target"], str)):
target = action_properties_mapping[action]["condition"]["target"]
else:
target=int(action_properties_mapping[action]["condition"]["target"])
if(result==target):
output_list = [] # List to store the output of actions whose outputs are required by downstream operations
queue.append(branching_action)
action_names = action_properties_mapping[branching_action]["outputs_from"] # Get the list of actions whose output will be used
if(len(action_names)==1): # if only output of one action is required
key = action_names[0]+"-output"
output = pickle.loads(redis_instace.get(key))
action_properties_mapping[branching_action]["arguments"] = output
else:
for item in action_names:
key = item+"-output"
output = pickle.loads(redis_instace.get(key))
output_list.append(output)
action_properties_mapping[branching_action]["arguments"] = output_list
else:
output_list = [] # List to store the output of actions whose outputs are required by downstream operations
queue.append(alternate_action)
action_names = action_properties_mapping[alternate_action]["outputs_from"] # Get the list of actions whose output will be used
if(len(action_names)==1): # if only output of one action is required
key = action_names[0]+"-output"
output = pickle.loads(redis_instace.get(key))
action_properties_mapping[alternate_action]["arguments"] = output
else:
for item in action_names:
key = item+"-output"
output = pickle.loads(redis_instace.get(key))
output_list.append(output)
action_properties_mapping[alternate_action]["arguments"] = output_list
if(condition_op=="greater_than"):
pass
if(condition_op=="greater_than_equals"):
pass
if(condition_op=="less_than"):
pass
if(condition_op=="less_than_equals"):
pass
elif(action_type=="serial"):
next_action = action_properties_mapping[action]["next"]
if(next_action!=""):
output_list = [] # List to store the output of actions whose outputs are required by downstream operations
queue.append(next_action)
action_names = action_properties_mapping[next_action]["outputs_from"] # Get the list of actions whose output will be used
if(len(action_names)==1): # if only output of one action is required
key = action_names[0]+"-output"
output = pickle.loads(redis_instace.get(key))
action_properties_mapping[next_action]["arguments"] = output
else:
for item in action_names:
key = item+"-output"
output = pickle.loads(redis_instace.get(key))
output_list.append(output)
action_properties_mapping[next_action]["arguments"] = output_list
elif(action_type=="parallel"):
parallel_action_list = action_properties_mapping[action]["next"]
queue.append(parallel_action_list)
else:
reply = handle_parallel(queue,redis_instace,action_properties_mapping,action)
dag_metadata["function_activation_ids"] = list_of_func_ids
# print("DAG SPEC AFTER WORKFLOW EXECUTION--------\n")
# print(action_properties_mapping)
# print('\n')
submit_dag_metadata(dag_metadata)
print("DAG ID---->FUNC IDS",dag_metadata)
print('\n')
# print('INTERMEDIATE OUTPUTS FROM ALL ACTIONS-----\n')
# get_redis_contents(redis_instace)
# print('\n')
redis_instace.flushdb()
print("Cleaned up in-memory intermediate outputs successfully\n")
if(isinstance(reply,list)):
res = {"dag_id": dag_metadata["dag_id"],
"result": reply
}
else:
res = {
"dag_id": dag_metadata["dag_id"],
"result": reply.json()
}
dag_responses.append(res)

@ -0,0 +1,51 @@
import os
import boto3
from botocore.exceptions import ClientError
aws_access_key_id = os.environ.get('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
print(aws_access_key_id,aws_secret_access_key)
# s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
# upload_file_path = "dag_register.py"
# bucket_name = 'dagit-store'
# key_name = upload_file_path
# folder_path = 'images'
# folder_name = "images"
# try:
# s3.upload_file(upload_file_path,bucket_name,key_name)
# s3.put_object_acl(Bucket=bucket_name, Key=key_name, ACL='public-read')
# object_url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+key_name
# print("Uploaded....\n")
# print(object_url)
# except ClientError as e:
# print(e)
# loop through files in folder
# for subdir, dirs, files in os.walk(folder_path):
# for file in files:
# # get full path of file
# file_path = os.path.join(subdir, file)
# # get S3 object key
# object_key = os.path.relpath(file_path, folder_path)
# # upload file to S3
# # s3.Object(bucket_name, object_key).upload_file(file_path)
# # s3.upload_file(file_path,bucket_name,object_key)
# s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
# s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
# print("Uploaded....\n")
# try:
# response = s3.generate_presigned_url('get_object',
# Params={'Bucket': bucket_name,
# 'Key': key_name},
# ExpiresIn=3600)
# print(response)
# except ClientError as e:
# print(e)

@ -1,48 +1,346 @@
#!/usr/bin/env python3
import requests
import sys
import subprocess
import threading
import queue
import json
import os
import time
from flask import Flask, request,jsonify,send_file
import pymongo
def get_trigger():
import orchestrator
import validate_trigger
app = Flask(__name__)
action_url_mappings = {} #Store action->url mappings
action_properties_mapping = {} #Stores the action name and its corresponding properties
responses = []
list_of_func_ids = []
@app.route("/")
def home():
data = {"message": "Hello,welcome to DAGit","author":"Anubhav Jana"}
return jsonify(data)
@app.route('/view/functions', methods=['GET'])
def list_actions():
list_of_actions = []
stream = os.popen(' wsk -i action list')
actions = stream.read().strip().split(' ')
try:
for action in actions:
if action=='' or action=='private' or action=='blackbox':
continue
else:
list_of_actions.append(action.split('/')[2])
data = {"status": 200,"DAGit functions":list_of_actions}
return data
except Exception as e:
data = {"status": 404, "failure reason": e}
@app.route('/register/trigger/',methods=['POST'])
def register_trigger():
trigger_json = request.json
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["trigger_store"]
mycol = mydb["triggers"]
# query = {"dag_id":dag_id}
projection = {"_id": 0,"trigger_name":1,"type":1,"trigger":1,"dags":1,"functions":1}
try:
cursor = mycol.insert_one(trigger_json)
print("OBJECT ID GENERATED",cursor.inserted_id)
if(trigger_json["type"]=="dag"):
targets = trigger_json["dags"]
elif(trigger_json["type"]=="function"):
targets = trigger_json["functions"]
data = {"status":"success","trigger_name":trigger_json["trigger_name"],"trigger_type":trigger_json["type"],"trigger_target":targets}
return json.dumps(data)
except Exception as e:
data = {"status":"fail","reason":e}
return json.dumps(data)
@app.route('/register/function/<function_name>',methods=['POST'])
def register_function(function_name):
list_of_file_keys = []
document = {}
function_dir = '/home/faasapp/Desktop/anubhav/function_modules' # Library of functions
new_dir = function_name
destination = os.path.join(function_dir, new_dir)
# Create the directory
os.makedirs(destination, exist_ok=True)
files = request.files
for filekey in files:
if filekey!='description':
list_of_file_keys.append(filekey)
for key in list_of_file_keys:
file = request.files[key]
filename = file.filename
# Save, copy, remove
file.save(file.filename)
shutil.copy(filename, destination)
os.remove(filename)
image_build_script = 'buildAndPush.sh'
shutil.copy(image_build_script, destination)
# Prepare data
document["function_name"] = function_name
document["image_build_script"] = 'buildAndPush.sh'
document["python_script"] = (request.files[list_of_file_keys[0]]).filename
document["dockerfile"] = (request.files[list_of_file_keys[1]]).filename
document["requirements.txt"] =(request.files[list_of_file_keys[2]]).filename
docker_image_name = "10.129.28.219:5000/"+function_name+"-image"
api_name = "/"+function_name+"-api"
path_name = "/"+function_name+"-path"
password = '1234'
# build docker image
cmd = ["sudo", "-S", "/home/faasapp/Desktop/anubhav/controlplane/build_image.sh",destination,docker_image_name]
# open subprocess with Popen
process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
# pass password to standard input
process.stdin.write(password + "\n")
process.stdin.flush()
# wait for process to complete and get output
output, errors = process.communicate()
print("OUTPUT---------",output)
print("ERRORS---------",errors)
# if(errors):
# print("There is error building docker file")
# data = {"message":"fail","reason":"docker build failed"}
# return json.dumps(data)
# else:
# create action, register action with api, populate its mapping
subprocess.call(['./create_action.sh',destination,docker_image_name,function_name])
subprocess.call(['./register.sh',api_name,path_name,function_name])
subprocess.call(['bash', './actions.sh'])
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["function_store"]
mycol = mydb["functions"]
try:
cursor = mycol.insert_one(document)
print("OBJECT ID GENERATED",cursor.inserted_id)
data = {"message":"success"}
return json.dumps(data)
except Exception as e:
print("Error--->",e)
data = {"message":"fail","reason":e}
return json.dumps(data)
# data = {"message":"success"}
# return json.dumps(data)
@app.route('/register/dag/',methods=['POST'])
def register_dag():
dag_json = request.json
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dags"]
try:
cursor = mycol.insert_one(dag_json)
print("OBJECT ID GENERATED",cursor.inserted_id)
data = {"message":"success"}
return json.dumps(data)
except Exception as e:
print("Error--->",e)
data = {"message":"fail","reason":e}
return json.dumps(data)
@app.route('/view/dag/<dag_name>',methods=['GET'])
def view_dag(dag_name):
dag_info_map = {}
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dags"]
document = mycol.find({"name":dag_name})
data = list(document)
dag_info_list = []
for items in data:
dag_info_list = items["dag"]
dag_info_map["dag_name"] = items["name"]
dag_info_map["number_of_nodes"] = len(dag_info_list)
dag_info_map["starting_node"] = dag_info_list[0]["node_id"]
for dag_items in dag_info_list:
node_info_map = {}
if(len(dag_items["properties"]["outputs_from"])==0):
node_info_map["get_outputs_from"] = "Starting action - >No outputs consumed"
else:
node_info_map["get_outputs_from"] = dag_items["properties"]["outputs_from"]
node_info_map["primitive"] = dag_items["properties"]["primitive"]
if(dag_items["properties"]["primitive"]=="condition"):
node_info_map["next_node_id_if_condition_true"] = dag_items["properties"]["branch_1"]
node_info_map["next_node_id_if_condition_false"] = dag_items["properties"]["branch_2"]
else:
if(dag_items["properties"]["next"]!=""):
node_info_map["next_function"] = dag_items["properties"]["next"]
else:
node_info_map["next_function"] = "Ending node_id of a path"
dag_info_map[dag_items["node_id"]] = node_info_map
response = {"dag_data":dag_info_map}
# formatted_json = json.dumps(response, indent=20)
return response
@app.route('/view/dags',methods=['GET'])
def view_dags():
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dags"]
document = mycol.find()
data = list(document)
print(data)
# Serialize the data to JSON
json_data = json.dumps(data, default=str)
json_string ='{"trigger_data":'+str(json_data)+'}'
json_string ='{"dag":'+str(json_data)+'}'
data = json.loads(json_string)
# Format the JSON string with indentation
formatted_json = json.dumps(data, indent=4)
return formatted_json
@app.route('/view/triggers',methods=['GET'])
def view_triggers():
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["trigger_store"]
mycol = mydb["triggers"]
document = mycol.find()
data = list(document)
# Serialize the data to JSON
json_data = json.dumps(data, default=str)
json_string ='{"trigger":'+str(json_data)+'}'
data = json.loads(json_string)
# Format the JSON string with indentation
# formatted_json = json.dumps(data, indent=4)
return data
@app.route('/view/trigger/<trigger_name>',methods=['GET'])
def view_trigger(trigger_name):
print(request.url)
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["trigger_store"]
mycol = mydb["triggers"]
query = {"trigger_name":trigger_name}
projection = {"_id": 0,"trigger_name":1,"type":1,"trigger":1,"dags":1,"functions":1}
document = mycol.find(query,projection)
data = list(document)
# print(data)
json_data = json.dumps(data, default=str)
json_string ='{"trigger":'+str(json_data)+'}'
data = json.loads(json_string)
formatted_json = json.dumps(data, indent=4)
return formatted_json
def main():
res = json.loads(get_trigger())
print(res)
# EXAMPLE URL: http://10.129.28.219:5001/view/activation/8d7df93e8f2940b8bdf93e8f2910b80f
@app.route('/view/activation/<activation_id>', methods=['GET', 'POST'])
def list_activations(activation_id):
# activation_id = '74a7b6c707d14973a7b6c707d1a97392'
cmd = ['wsk', '-i', 'activation', 'get', activation_id]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
json_res = result.stdout.decode().split('\n')[1:] # Ignore first line of output
res = json.loads('\n'.join(json_res))
d={}
d["action_name"] = res["name"]
d["duration"] = res["duration"]
d["status"] = res["response"]["status"]
d["result"] = res["response"]["result"]
return({"action_name":res["name"],
"duration": res["duration"],
"status": res["response"]["status"],
"result":res["response"]["result"]
})
# EXAMPLE URL: http://10.129.28.219:5001/view/dag/76cc8a53-0a63-47bb-a5b5-9e6744f67c61
@app.route('/view/<dag_id>',methods=['GET'])
def view_dag_metadata(dag_id):
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["dag_store"]
mycol = mydb["dag_metadata"]
query = {"dag_id":dag_id}
projection = {"_id": 0,"dag_id":1,"dag_name":1,"function_activation_ids":1}
document = mycol.find(query, projection)
data = list(document)
response = {"dag_metadata":data}
return json.dumps(response)
# EXAMPLE URL: http://10.129.28.219:5001/run/action/odd-even-action
# http://10.129.28.219:5001/run/action/decode-function
# def server():
# # server_ip = "10.129.28.219"
# # server_port = "5001"
# url = "http://10.129.28.219:5001/register/trigger/myfirsttrigger"
# # data = {"trigger_name":"myfirsttrigger", "dags":['odd-even-test']}
# # json_data = json.dumps(data)
# input_json_file = open(sys.argv[1])
# params = json.load(input_json_file)
# reply = requests.post(url = url,json = params,verify=False)
# print(reply.json())
# @app.route('/run/action/<action_name>/', methods=['POST'])
def execute_action(action_name):
try:
res = orchestrator.execute_action(action_name)
data = {"status": 200,"dag_output":res}
return data
except Exception as e:
data = {"status": 404 ,"failure_reason":e}
return data
# EXAMPLE URL: http://10.129.28.219:5001/run/dag/odd-even-test/{"number":16}
@app.route('/run/<trigger_name>', methods=['GET', 'POST'])
def orchestrate_dag(trigger_name):
try:
triggers = validate_trigger.get_trigger_json(trigger_name)
# print(triggers)
if(len(triggers)==0): #could not fetch registered trigger
return {"response": "the given trigger is not registered in DAGit trigger store"}
else:
thread_list = []
result_queue = queue.Queue()
if(triggers[0]['type']=='dag'):
dags = triggers[0]['dags']
try:
# def main():
# server()
for dag in dags:
thread_list.append(threading.Thread(target=orchestrator.execute_dag, args=[dag]))
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
print(orchestrator.dag_responses)
print(orchestrator.x)
# results = []
# while not result_queue.empty():
# result = result_queue.get()
# results.append(result)
return {"response":orchestrator.dag_responses}
# res = orchestrator.execute_dag(dag)
# return {"response":res,"status":200}
except Exception as e:
print(e)
return {"response":"failed","status":400}
# thread_list.append(threading.Thread(target=orchestrator.execute_dag, args=[dag]))
# for thread in thread_list:
# thread.start()
# for thread in thread_list:
# thread.join()
# return {"response": dags}
else:
functions = triggers[0]['functions']
for function in functions:
thread_list.append(threading.Thread(target=orchestrator.execute_action, args=[function]))
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
if __name__=="__main__":
main()
# return {"response": function}
# res = orchestrator.execute_dag(dag_name)
# data = {"status": 200,"dag_output":res}
# return data
except Exception as e:
print(e)
data = {"status": 404 ,"message":"failed"}
return data
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)

@ -0,0 +1,15 @@
#!/usr/bin/env python3
import pymongo
def get_trigger_json(trigger_name):
myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017")
mydb = myclient["trigger_store"]
mycol = mydb["triggers"]
query = {"trigger_name":trigger_name}
projection = {"_id": 0, "trigger_name": 1,"type": 1,"dags": 1, "functions":1}
document = mycol.find(query, projection)
data = list(document)
return data

@ -1,2 +1,7 @@
sudo ./buildAndPush.sh 10.129.28.219:5000/decode-function-image
wsk -i action create decode --docker 10.129.28.219:5000/decode-function-image --web=true --timeout=300000
wsk -i action create decode-function --docker 10.129.28.219:5000/decode-function-image --web=true --timeout=420000 -m 4096
wsk -i action update decode-function --docker 10.129.28.219:5000/decode-function-image decode.py --timeout 300000
./register.sh /decode-function /decode decode-function
// "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ElephantsDream.mp4",

@ -9,6 +9,8 @@ import json
import sys
import ffmpeg
import boto3
import requests
import shutil
from botocore.exceptions import ClientError
@ -16,6 +18,12 @@ from urllib.request import urlopen,urlretrieve
logging.basicConfig(level=logging.INFO)
def download_video(url, file_name):
# Download the file
with requests.get(url, stream=True) as r:
with open(file_name, 'wb') as f:
shutil.copyfileobj(r.raw, f)
def main():
images_dir = "decoded-images"
@ -28,8 +36,9 @@ def main():
dwn_link = params["filename"]
# Set how many spots you want to extract a video from.
parts = params["parts"]
file_name = 'decode_video.mp4'
urlretrieve(dwn_link, file_name)
file_name = 'decode_video.mp4'
download_video(dwn_link, file_name)
# urlretrieve(dwn_link, file_name)
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)

@ -1,4 +1,4 @@
{
"filename": "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ElephantsDream.mp4",
"parts": 10
"filename": "https://dagit-store.s3.ap-south-1.amazonaws.com/Sci-Fi+Short+Film+%E2%80%9CTears+of+Steel_+_+DUST.mp4",
"parts": 20
}

@ -1,3 +1,4 @@
boto3
redis
ffmpeg-python
requests

@ -19,6 +19,10 @@ RUN pip install opencv-python
RUN cd /action; pip install -r requirements.txt
ENV AWS_ACCESS_KEY_ID="AKIAYFB773UVZSOAVZN4"
ENV AWS_SECRET_ACCESS_KEY="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"
ENV AWS_REGION="ap-south-1"
# Ensure source assets are not drawn from the cache
# after this date
ENV REFRESHED_AT 2016-09-05T13:59:39Z

@ -1,104 +1,155 @@
#!/usr/bin/env python3
import os
import redis
import requests
import boto3
import pickle
from io import BytesIO
import cv2
import time
import numpy as np
import subprocess
import logging
import json
import sys
import paramiko
import pysftp
def main():
import time as time1
start = time1.time()
cnopts = pysftp.CnOpts()
cnopts.hostkeys = None
try:
sftp = pysftp.Connection(
host="10.129.28.219",
username="faasapp",
password="1234",
cnopts=cnopts
)
logging.info("connection established successfully")
except:
logging.info('failed to establish connection to targeted server')
edge_detect__directory = "edge-detected-images"
is_edgedetect_dir = os.path.isdir(edge_detect__directory)
if(is_edgedetect_dir == False):
os.mkdir(edge_detect__directory)
images_dir = "images"
images_dir = "edge-detected-images"
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
# edge_detected_images = {}
edge_detected_result = []
try:
decode_activation_id = params["activation_id"]
parts = params["parts"]
for i in range(0,parts):
if os.path.exists(images_dir+'/edge_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/edge_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
load_image = pickle.loads(r.get(decode_output))
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, 'wb') as f:
f.write(load_image)
img = cv2.imread(image_name)
# height, width = img.shape[:2]
# size = os.stat(img_name).st_size
# decoded_images_sizes[img_name] = size
image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny_output = cv2.Canny(image, 80, 150)
output_image = images_dir+'/edge_detected_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, canny_output)
edge_detected_result.append('edge_detected_image_'+str(i)+'.jpg')
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
image_url_list = params["image_url_links"]
parts = len(image_url_list)
for i in range(0,parts):
if os.path.exists(images_dir+'/edge_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/edge_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
response = requests.get(image_url_list[i])
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, "wb") as f:
f.write(response.content)
img = cv2.imread(image_name)
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny_output = cv2.Canny(image, 80, 150)
output_image = images_dir+'/edge_detected_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, canny_output)
edge_detected_result.append('edge_detected_image_'+str(i)+'.jpg')
remote_download_path = "/home/faasapp/Desktop/anubhav/sprocket-decode/"+images_dir
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
remote_upload_path = "/home/faasapp/Desktop/anubhav/edge-detection/"+edge_detect__directory
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
try:
sftp.chdir(remote_download_path) # Test if remote_path exists
except IOError:
sftp.mkdir(remote_download_path) # Create remote_path
sftp.chdir(remote_download_path)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in edge_detected_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"edge_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"number_of_images": parts
}))
try:
sftp.chdir(remote_upload_path) # Test if remote_path exists
except IOError:
sftp.mkdir(remote_upload_path) # Create remote_path
sftp.chdir(remote_upload_path)
return({"edge_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"number_of_images": parts
})
sftp.get_d(remote_download_path,preserve_mtime=True,localdir=images_dir)
if __name__ == "__main__":
main()
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
decode_activation_id = params["activation_id"]
decoded_images_sizes = {}
edge_detected_images = {}
parts = params["parts"]
for i in range(0,parts):
img_name = images_dir+'/Image' + str(i) + '.jpg'
img = cv2.imread(img_name)
# height, width = img.shape[:2]
size = os.stat(img_name).st_size
decoded_images_sizes[img_name] = size
image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny_output = cv2.Canny(image, 80, 150)
filename = 'detected-edges-' + str(i) +'.jpg'
# Saving the image
cv2.imwrite(edge_detect__directory+"/"+filename, canny_output)
edge_img = cv2.imread(edge_detect__directory+"/"+filename)
# edge_height, edge_width = edge_img.shape[:2]
# decode_activation_id = params["activation_id"]
# decoded_images_sizes = {}
# edge_detected_images = {}
# parts = params["parts"]
# for i in range(0,parts):
# img_name = images_dir+'/Image' + str(i) + '.jpg'
# img = cv2.imread(img_name)
# # height, width = img.shape[:2]
# size = os.stat(img_name).st_size
# decoded_images_sizes[img_name] = size
# image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# canny_output = cv2.Canny(image, 80, 150)
edge_detected_size = os.stat(edge_detect__directory+"/"+filename).st_size
edge_detected_images[edge_detect__directory+"/"+filename] = edge_detected_size
current_path = os.getcwd()
sftp.put_d(current_path+"/"+edge_detect__directory,preserve_mtime=True,remotepath=remote_upload_path)
detected_edge_images = os.listdir(current_path+"/"+edge_detect__directory)
end = time1.time()
exec_time = end-start
decode_execution_time = params["exec_time_decode"]
print(json.dumps({ "edge_detection_output": detected_edge_images,
"edge_detect_activation_id": str(activation_id),
"number_of_images_processed": parts,
"edge_detection_execution_time": exec_time,
"decode_execution_time": decode_execution_time,
"edge_detected_images_size": edge_detected_images,
"decoded_images_size": decoded_images_sizes
}))
# filename = 'detected-edges-' + str(i) +'.jpg'
# # Saving the image
# cv2.imwrite(edge_detect__directory+"/"+filename, canny_output)
# edge_img = cv2.imread(edge_detect__directory+"/"+filename)
# # edge_height, edge_width = edge_img.shape[:2]
# edge_detected_size = os.stat(edge_detect__directory+"/"+filename).st_size
# edge_detected_images[edge_detect__directory+"/"+filename] = edge_detected_size
# current_path = os.getcwd()
# sftp.put_d(current_path+"/"+edge_detect__directory,preserve_mtime=True,remotepath=remote_upload_path)
# detected_edge_images = os.listdir(current_path+"/"+edge_detect__directory)
# print(json.dumps({ "edge_detection_output": detected_edge_images,
# "edge_detect_activation_id": str(activation_id),
# "number_of_images_processed": parts,
# "edge_detection_execution_time": exec_time,
# "decode_execution_time": decode_execution_time,
# "edge_detected_images_size": edge_detected_images,
# "decoded_images_size": decoded_images_sizes
# }))
if __name__ == "__main__":
main()

@ -1,6 +1,4 @@
opencv-python
redis
paramiko==2.11.0
pycparser==2.21
PyNaCl==1.5.0
pysftp==0.2.9
requests
boto3

@ -0,0 +1,25 @@
# Dockerfile for Python whisk docker action
FROM openwhisk/dockerskeleton
ENV FLASK_PROXY_PORT 8080
## Install our action's Python dependencies
ADD requirements.txt /action/requirements.txt
ENV AWS_ACCESS_KEY_ID="AKIAYFB773UVZSOAVZN4"
ENV AWS_SECRET_ACCESS_KEY="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"
ENV AWS_REGION="ap-south-1"
RUN apk --update add python py-pip openssl ca-certificates py-openssl wget
RUN apk --update add --virtual build-dependencies libffi-dev openssl-dev python-dev py-pip build-base \
&& apk add jpeg-dev zlib-dev libjpeg \
&& pip install --upgrade pip
RUN cd /action; pip install --no-cache-dir -r requirements.txt
RUN pip install opencv-python
# Ensure source assets are not drawn from the cacheafter this date
ENV REFRESHED_AT 2016-09-05T13:59:39Z
# Add all source assets
ADD . /action
# Rename our executable Python action
ADD blur.py /action/exec
# Leave CMD as is for Openwhisk
CMD ["/bin/bash", "-c", "cd actionProxy && python3 -u actionproxy.py"]

@ -0,0 +1,134 @@
#!/usr/bin/env python3
import requests
import os
import boto3
import redis
import pickle
import json
import cv2
import sys
def main():
images_dir = "bilateral-images"
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
bilateral_result = []
try:
decode_activation_id = params["activation_id"]
parts = params["parts"]
for i in range(0,parts):
if os.path.exists(images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg')
for i in range(0,parts):
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
load_image = pickle.loads(r.get(decode_output))
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, 'wb') as f:
f.write(load_image)
originalmage = cv2.imread(image_name)
ReSized1 = cv2.resize(originalmage, (720, 640))
grayScaleImage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2GRAY)
ReSized2 = cv2.resize(grayScaleImage, (720, 640))
#applying median blur to smoothen an image
smoothGrayScale = cv2.medianBlur(grayScaleImage, 5)
ReSized3 = cv2.resize(smoothGrayScale, (720, 640))
#retrieving the edges for cartoon effect
getEdge = cv2.adaptiveThreshold(smoothGrayScale, 255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
ReSized4 = cv2.resize(getEdge, (720, 640))
#applying bilateral filter to remove noise and keep edge sharp as required
colorImage = cv2.bilateralFilter(originalmage, 9, 300, 300)
ReSized5 = cv2.resize(colorImage, (720, 640))
#masking edged image with our "BEAUTIFY" image
cartoonImage = cv2.bitwise_and(colorImage, colorImage, mask=getEdge)
cartoon_image = cv2.resize(cartoonImage, (720, 640))
output_image = images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, cartoon_image)
img = open(output_image,"rb").read()
pickled_object = pickle.dumps(img)
bilateral_output = "bilateral-output-image"+activation_id+"-"+str(i)
r.set(bilateral_output,pickled_object)
bilateral_result.append('bilateral_filtered_image_'+str(i)+'.jpg')
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
image_url_list = params["image_url_links"]
parts = len(image_url_list)
for i in range(0,parts):
if os.path.exists(images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg')
for i in range(0,parts):
response = requests.get(image_url_list[i])
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, "wb") as f:
f.write(response.content)
originalmage = cv2.imread(image_name)
ReSized1 = cv2.resize(originalmage, (720, 640))
grayScaleImage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2GRAY)
ReSized2 = cv2.resize(grayScaleImage, (720, 640))
#applying median blur to smoothen an image
smoothGrayScale = cv2.medianBlur(grayScaleImage, 5)
ReSized3 = cv2.resize(smoothGrayScale, (720, 640))
#retrieving the edges for cartoon effect
getEdge = cv2.adaptiveThreshold(smoothGrayScale, 255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
ReSized4 = cv2.resize(getEdge, (720, 640))
#applying bilateral filter to remove noise and keep edge sharp as required
colorImage = cv2.bilateralFilter(originalmage, 9, 300, 300)
ReSized5 = cv2.resize(colorImage, (720, 640))
#masking edged image with our "BEAUTIFY" image
cartoonImage = cv2.bitwise_and(colorImage, colorImage, mask=getEdge)
cartoon_image = cv2.resize(cartoonImage, (720, 640))
output_image = images_dir+'/bilateral_filtered_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, cartoon_image)
bilateral_result.append('bilateral_filtered_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in bilateral_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"bilateral_filtered_image_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"bilateral_filtered_image_links":url_list,
"activation_id": str(activation_id),
"parts": parts
})
if __name__ == "__main__":
main()

@ -0,0 +1,5 @@
sudo ./buildAndPush.sh 10.129.28.219:5000/image-processing
wsk -i action create image-bilateral-filter --docker 10.129.28.219:5000/image-processing bilateral.py --web=true --timeout=420000 -m 4096
wsk -i action update image-bilateral-filter --docker 10.129.28.219:5000/image-processing bilateral.py --timeout 300000
./register.sh /image-bilateral-api /image-bilateral-path image-bilateral-filter --response-type=json

@ -0,0 +1,24 @@
#!/bin/bash
#
# This script will build the docker image and push it to dockerhub.
#
# Usage: buildAndPush.sh imageName
#
# Dockerhub image names look like "username/appname" and must be all lower case.
# For example, "janesmith/calculator"
IMAGE_NAME=$1
echo "Using $IMAGE_NAME as the image name"
# Make the docker image
docker build -t $IMAGE_NAME .
if [ $? -ne 0 ]; then
echo "Docker build failed"
exit
fi
docker push $IMAGE_NAME
if [ $? -ne 0 ]; then
echo "Docker push failed"
exit
fi

@ -0,0 +1,4 @@
requests
boto3
redis
opencv-python

@ -0,0 +1,29 @@
# Dockerfile for Python whisk docker action
FROM openwhisk/dockerskeleton
ENV FLASK_PROXY_PORT 8080
## Install our action's Python dependencies
ADD requirements.txt /action/requirements.txt
ENV AWS_ACCESS_KEY_ID="AKIAYFB773UVZSOAVZN4"
ENV AWS_SECRET_ACCESS_KEY="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"
ENV AWS_REGION="ap-south-1"
RUN apk --update add python py-pip openssl ca-certificates py-openssl wget
RUN apk --update add --virtual build-dependencies libffi-dev openssl-dev python-dev py-pip build-base \
&& apk add jpeg-dev zlib-dev libjpeg \
&& pip install --upgrade pip
RUN cd /action; pip install --no-cache-dir -r requirements.txt
RUN pip install opencv-python
RUN pip install matplotlib
# Ensure source assets are not drawn from the cache after this date
ENV REFRESHED_AT 2016-09-05T13:59:39Z
# Add all source assets
ADD . /action
# Rename our executable Python action
ADD face_detect.py /action/exec
ADD haarcascade_car.xml /action
ADD haarcascade_frontalface_default.xml /action
# Leave CMD as is for Openwhisk
CMD ["/bin/bash", "-c", "cd actionProxy && python3 -u actionproxy.py"]

@ -0,0 +1,5 @@
sudo ./buildAndPush.sh 10.129.28.219:5000/image-denoise-image
wsk -i action create face-detection --docker 10.129.28.219:5000/image-denoise-image --web=true --timeout=300000
./register.sh /image-face-api /image-face-path face-detection --response-type=json
wsk -i action update face-detection --docker 10.129.28.219:5000/image-denoise-image face_detect.py --timeout 300000

@ -0,0 +1,24 @@
#!/bin/bash
#
# This script will build the docker image and push it to dockerhub.
#
# Usage: buildAndPush.sh imageName
#
# Dockerhub image names look like "username/appname" and must be all lower case.
# For example, "janesmith/calculator"
IMAGE_NAME=$1
echo "Using $IMAGE_NAME as the image name"
# Make the docker image
docker build -t $IMAGE_NAME .
if [ $? -ne 0 ]; then
echo "Docker build failed"
exit
fi
docker push $IMAGE_NAME
if [ $? -ne 0 ]; then
echo "Docker push failed"
exit
fi

@ -0,0 +1,167 @@
#!/usr/bin/env python3
import requests
import os
import boto3
import redis
import pickle
import json
import cv2
import sys
def main():
images_dir = "face-detected-images"
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
face_detected_result = []
try:
decode_activation_id = params["activation_id"]
parts = params["parts"]
for i in range(0,parts):
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
load_image = pickle.loads(r.get(decode_output))
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, 'wb') as f:
f.write(load_image)
img = cv2.imread(image_name)
# Load Haar cascade for face detection
face_cascade = cv2.CascadeClassifier('../haarcascade_frontalface_default.xml')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# Draw bounding boxes around faces
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)[]
# face = img[y:y+h, x:x+w]
# # Apply a Gaussian blur to the face ROI
# blurred_face = cv2.GaussianBlur(face, (23, 23), 30)
# # Replace the face ROI with the blurred face
# img[y:y+h, x:x+w] = blurred_face
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
# face_blurred_image = images_dir+'/face_blurred_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, img)
# cv2.imwrite(face_blurred_image, blurred_face)
imag = open(output_image,"rb").read()
pickled_object = pickle.dumps(imag)
face_detected_output = "face-detected-image"+activation_id+"-"+str(i)
print(pickled_object)
r.set(face_detected_output,pickled_object)
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in face_detected_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
})
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
image_url_list = params["image_url_links"]
parts = len(image_url_list)
for i in range(0,parts):
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
response = requests.get(image_url_list[i])
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, "wb") as f:
f.write(response.content)
img = cv2.imread(image_name)
# Load Haar cascade for face detection
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# Draw bounding boxes around faces
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, img)
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in face_detected_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts,
"pickled_object":pickled_object
})
if __name__ == "__main__":
main()

@ -0,0 +1,5 @@
requests
boto3
redis
opencv-python

@ -0,0 +1,26 @@
# Dockerfile for Python whisk docker action
FROM openwhisk/dockerskeleton
ENV FLASK_PROXY_PORT 8080
## Install our action's Python dependencies
ADD requirements.txt /action/requirements.txt
ENV AWS_ACCESS_KEY_ID="AKIAYFB773UVZSOAVZN4"
ENV AWS_SECRET_ACCESS_KEY="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"
ENV AWS_REGION="ap-south-1"
RUN apk --update add python py-pip openssl ca-certificates py-openssl wget
RUN apk --update add --virtual build-dependencies libffi-dev openssl-dev python-dev py-pip build-base \
&& apk add jpeg-dev zlib-dev libjpeg \
&& pip install --upgrade pip
RUN cd /action; pip install --no-cache-dir -r requirements.txt
RUN pip install opencv-python
RUN pip install matplotlib
# Ensure source assets are not drawn from the cache after this date
ENV REFRESHED_AT 2016-09-05T13:59:39Z
# Add all source assets
ADD . /action
# Rename our executable Python action
ADD img_hist.py /action/exec
# Leave CMD as is for Openwhisk
CMD ["/bin/bash", "-c", "cd actionProxy && python3 -u actionproxy.py"]

@ -0,0 +1,4 @@
sudo ./buildAndPush.sh 10.129.28.219:5000/image-processing
./register.sh /image-hist-api /image-hist-path image-histogram --response-type=json
wsk -i action create image-histogram --docker 10.129.28.219:5000/image-denoise-image --web=true --timeout=300000
wsk -i action update image-histogram --docker 10.129.28.219:5000/image-denoise-image img_hist.py --timeout 300000

@ -0,0 +1,24 @@
#!/bin/bash
#
# This script will build the docker image and push it to dockerhub.
#
# Usage: buildAndPush.sh imageName
#
# Dockerhub image names look like "username/appname" and must be all lower case.
# For example, "janesmith/calculator"
IMAGE_NAME=$1
echo "Using $IMAGE_NAME as the image name"
# Make the docker image
docker build -t $IMAGE_NAME .
if [ $? -ne 0 ]; then
echo "Docker build failed"
exit
fi
docker push $IMAGE_NAME
if [ $? -ne 0 ]; then
echo "Docker push failed"
exit
fi

@ -0,0 +1,116 @@
#!/usr/bin/env python3
import requests
import os
import boto3
import redis
import pickle
import json
import cv2
import sys
import matplotlib.pyplot as plt
def main():
images_dir = "histogram-images"
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
histogram_result = []
try:
decode_activation_id = params["activation_id"]
parts = params["parts"]
for i in range(0,parts):
if os.path.exists(images_dir+'/histogram_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/histogram_image_'+str(i)+'.jpg')
for i in range(0,parts):
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
load_image = pickle.loads(r.get(decode_output))
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, 'wb') as f:
f.write(load_image)
# Load image
img = cv2.imread(image_name, 0) # 0 for grayscale
# Calculate histogram
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
bins = range(256)
output_image = images_dir+'/histogram_image_'+str(i)+'.jpg'
# Plot histogram
plt.hist(img.ravel(), bins, [0, 256])
plt.title('Histogram')
plt.xlabel('Intensity')
plt.ylabel('Pixel Count')
plt.savefig(output_image)
histogram_result.append('histogram_image_'+str(i)+'.jpg')
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
image_url_list = params["image_url_links"]
parts = len(image_url_list)
for i in range(0,parts):
if os.path.exists(images_dir+'/histogram_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/histogram_image_'+str(i)+'.jpg')
for i in range(0,parts):
response = requests.get(image_url_list[i])
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, "wb") as f:
f.write(response.content)
# Load image
img = cv2.imread(image_name, 0) # 0 for grayscale
# Calculate histogram
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
bins = range(256)
output_image = images_dir+'/histogram_image_'+str(i)+'.jpg'
# Plot histogram
plt.hist(img.ravel(), bins, [0, 256])
plt.title('Histogram')
plt.xlabel('Intensity')
plt.ylabel('Pixel Count')
plt.savefig(output_image)
histogram_result.append('histogram_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in histogram_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"histogram_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"histogram_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
})
if __name__ == "__main__":
main()

@ -0,0 +1,5 @@
requests
boto3
redis
opencv-python

@ -126,6 +126,6 @@ def main():
"file_link":dwn_link,
"exec_time_decode":exec_time
}))
if __name__ == "__main__":
main()

@ -3,6 +3,7 @@
import os
import json
import sys
def main():
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
@ -23,4 +24,4 @@ def main():
if __name__ == "__main__":
main()
main()

@ -1,6 +1,6 @@
<h1> DAGit </h1>
<p><h3>Currently being developed by Anubhav Jana, IITB</h3></p>
<p><h3>Currently being developed by Anubhav Jana along with Prof Puru IITB</h3></p>
<h4>This serverless FaaS platform supports individual function registrations, DAG registrations, Trigger registrations associated with DAGs/functons. This platform also supports various DAG primitives which is provided in this document for reference.</h4>
@ -105,7 +105,6 @@ DAG specification includes both control dependancy as well as the control depend
{
"trigger_name": "mydagtrigger",
"type":"dag",
"trigger":"/run/<dag_name>/<param_json>",
"dags": ["odd-even-test","dummy-dag"],
"functions":""
}
@ -114,7 +113,6 @@ DAG specification includes both control dependancy as well as the control depend
{
"trigger_name": "myfunctiontrigger",
"type":"function",
"trigger":"/run/action/<action_name>/<param_json>",
"dags":"",
"functions": ["odd-even-action"]
}
@ -156,11 +154,8 @@ if __name__=="__main__":
* http://10.129.28.219:5001/register/function/<function_name>
* http://10.129.28.219:5001/run/dummy-dag/\{\"number":16\}\
* http://10.129.28.219:5001/run/<trigger_name>
* http://10.129.28.219:5001/run/odd-even-test/\{\"number":16\}\
* http://10.129.28.219:5001/action/odd-even-action/\{\"number":16\}\
* http://10.129.28.219:5001/view/<dag_id>
@ -168,19 +163,17 @@ if __name__=="__main__":
* http://10.129.28.219:5001/view/dags
* http://10.129.28.219:5001/view/dag/odd-even-test-2
* http://10.129.28.219:5001/view/dag/<dag_name>
* http://10.129.28.219:5001/register/dag
* http://10.129.28.219:5001/list/actions
* http://10.129.28.219:5001/view/dag/primitives
* http://10.129.28.219:5001/view/functions
* http://10.129.28.219:5001/
<h3>Supported DAG Primitive</h3>
<!-- ![SUPPORTED DAG PRIMITIVES](/home/faasapp/Desktop/anubhav/controlplane/images/dag_primitives.png) -->
<!-- ![SUPPORTED DAG PRIMITIVES](./controlplane/images/dag_primitives.png) -->
<img src="./controlplane/images/dag_primitives.png" alt="dag_primitive" style="width:700px;height:500px;">
@ -404,4 +397,8 @@ op_2 = params["__ow_body"][1]["key_action_2"]
Use these op_1 and op_2 to process
##############################################
<<<<<<< HEAD
##############################################
=======
##############################################
>>>>>>> 544c0a4dc690739a0fe08a2b7a830d804bb9f647

Loading…
Cancel
Save