You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.7 KiB
156 lines
5.7 KiB
#!/usr/bin/env python3
|
|
import os
|
|
import redis
|
|
import requests
|
|
import boto3
|
|
import pickle
|
|
import cv2
|
|
import time
|
|
import subprocess
|
|
import json
|
|
import sys
|
|
|
|
def main():
|
|
images_dir = "edge-detected-images"
|
|
is_images_dir = os.path.isdir(images_dir)
|
|
if(is_images_dir == False):
|
|
os.mkdir(images_dir)
|
|
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
|
|
activation_id = os.environ.get('__OW_ACTIVATION_ID')
|
|
params = json.loads(sys.argv[1])
|
|
# edge_detected_images = {}
|
|
edge_detected_result = []
|
|
try:
|
|
decode_activation_id = params["activation_id"]
|
|
parts = params["parts"]
|
|
for i in range(0,parts):
|
|
if os.path.exists(images_dir+'/edge_detected_image_'+str(i)+'.jpg'):
|
|
os.remove(images_dir+'/edge_detected_image_'+str(i)+'.jpg')
|
|
for i in range(0,parts):
|
|
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
|
|
load_image = pickle.loads(r.get(decode_output))
|
|
image_name = 'Image'+str(i)+'.jpg'
|
|
with open(image_name, 'wb') as f:
|
|
f.write(load_image)
|
|
|
|
img = cv2.imread(image_name)
|
|
# height, width = img.shape[:2]
|
|
# size = os.stat(img_name).st_size
|
|
# decoded_images_sizes[img_name] = size
|
|
image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
canny_output = cv2.Canny(image, 80, 150)
|
|
output_image = images_dir+'/edge_detected_image_'+str(i)+'.jpg'
|
|
cv2.imwrite(output_image, canny_output)
|
|
edge_detected_result.append('edge_detected_image_'+str(i)+'.jpg')
|
|
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
|
|
image_url_list = params["image_url_links"]
|
|
parts = len(image_url_list)
|
|
for i in range(0,parts):
|
|
if os.path.exists(images_dir+'/edge_detected_image_'+str(i)+'.jpg'):
|
|
os.remove(images_dir+'/edge_detected_image_'+str(i)+'.jpg')
|
|
for i in range(0,parts):
|
|
response = requests.get(image_url_list[i])
|
|
image_name = 'Image'+str(i)+'.jpg'
|
|
with open(image_name, "wb") as f:
|
|
f.write(response.content)
|
|
img = cv2.imread(image_name)
|
|
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
canny_output = cv2.Canny(image, 80, 150)
|
|
output_image = images_dir+'/edge_detected_image_'+str(i)+'.jpg'
|
|
cv2.imwrite(output_image, canny_output)
|
|
edge_detected_result.append('edge_detected_image_'+str(i)+'.jpg')
|
|
|
|
|
|
|
|
|
|
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
|
aws_region = os.getenv('AWS_REGION')
|
|
|
|
|
|
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
|
|
|
|
|
|
bucket_name = 'dagit-store'
|
|
folder_path = images_dir
|
|
folder_name = images_dir
|
|
for subdir, dirs, files in os.walk(folder_path):
|
|
for file in files:
|
|
file_path = os.path.join(subdir, file)
|
|
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
|
|
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
|
|
url_list=[]
|
|
for image in edge_detected_result:
|
|
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
|
|
url_list.append(url)
|
|
|
|
print(json.dumps({"edge_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"number_of_images": parts
|
|
|
|
}))
|
|
|
|
return({"edge_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"number_of_images": parts
|
|
|
|
})
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# decode_activation_id = params["activation_id"]
|
|
# decoded_images_sizes = {}
|
|
# edge_detected_images = {}
|
|
# parts = params["parts"]
|
|
# for i in range(0,parts):
|
|
# img_name = images_dir+'/Image' + str(i) + '.jpg'
|
|
# img = cv2.imread(img_name)
|
|
# # height, width = img.shape[:2]
|
|
# size = os.stat(img_name).st_size
|
|
# decoded_images_sizes[img_name] = size
|
|
# image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
# canny_output = cv2.Canny(image, 80, 150)
|
|
|
|
# filename = 'detected-edges-' + str(i) +'.jpg'
|
|
# # Saving the image
|
|
# cv2.imwrite(edge_detect__directory+"/"+filename, canny_output)
|
|
|
|
# edge_img = cv2.imread(edge_detect__directory+"/"+filename)
|
|
# # edge_height, edge_width = edge_img.shape[:2]
|
|
|
|
# edge_detected_size = os.stat(edge_detect__directory+"/"+filename).st_size
|
|
# edge_detected_images[edge_detect__directory+"/"+filename] = edge_detected_size
|
|
|
|
# current_path = os.getcwd()
|
|
# sftp.put_d(current_path+"/"+edge_detect__directory,preserve_mtime=True,remotepath=remote_upload_path)
|
|
# detected_edge_images = os.listdir(current_path+"/"+edge_detect__directory)
|
|
# print(json.dumps({ "edge_detection_output": detected_edge_images,
|
|
# "edge_detect_activation_id": str(activation_id),
|
|
# "number_of_images_processed": parts,
|
|
# "edge_detection_execution_time": exec_time,
|
|
# "decode_execution_time": decode_execution_time,
|
|
# "edge_detected_images_size": edge_detected_images,
|
|
# "decoded_images_size": decoded_images_sizes
|
|
# }))
|
|
|
|
|