You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
6.6 KiB

#!/usr/bin/env python3
import requests
import os
import boto3
import redis
import pickle
import json
import cv2
import sys
def main():
images_dir = "face-detected-images"
is_images_dir = os.path.isdir(images_dir)
if(is_images_dir == False):
os.mkdir(images_dir)
4 months ago
r = redis.Redis(host="127.0.0.1", port=6379, db=2)
activation_id = os.environ.get('__OW_ACTIVATION_ID')
params = json.loads(sys.argv[1])
face_detected_result = []
try:
decode_activation_id = params["activation_id"]
parts = params["parts"]
for i in range(0,parts):
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
load_image = pickle.loads(r.get(decode_output))
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, 'wb') as f:
f.write(load_image)
img = cv2.imread(image_name)
# Load Haar cascade for face detection
face_cascade = cv2.CascadeClassifier('../haarcascade_frontalface_default.xml')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# Draw bounding boxes around faces
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)[]
# face = img[y:y+h, x:x+w]
# # Apply a Gaussian blur to the face ROI
# blurred_face = cv2.GaussianBlur(face, (23, 23), 30)
# # Replace the face ROI with the blurred face
# img[y:y+h, x:x+w] = blurred_face
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
# face_blurred_image = images_dir+'/face_blurred_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, img)
# cv2.imwrite(face_blurred_image, blurred_face)
imag = open(output_image,"rb").read()
pickled_object = pickle.dumps(imag)
face_detected_output = "face-detected-image"+activation_id+"-"+str(i)
print(pickled_object)
r.set(face_detected_output,pickled_object)
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in face_detected_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
})
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
image_url_list = params["image_url_links"]
parts = len(image_url_list)
for i in range(0,parts):
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
for i in range(0,parts):
response = requests.get(image_url_list[i])
image_name = 'Image'+str(i)+'.jpg'
with open(image_name, "wb") as f:
f.write(response.content)
img = cv2.imread(image_name)
# Load Haar cascade for face detection
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# Draw bounding boxes around faces
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
cv2.imwrite(output_image, img)
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
aws_region = os.getenv('AWS_REGION')
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
bucket_name = 'dagit-store'
folder_path = images_dir
folder_name = images_dir
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
url_list=[]
for image in face_detected_result:
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
url_list.append(url)
print(json.dumps({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts
}))
return({"face_detected_image_url_links":url_list,
"activation_id": str(activation_id),
"parts": parts,
"pickled_object":pickled_object
})
if __name__ == "__main__":
main()