You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
5.2 KiB
126 lines
5.2 KiB
#!/usr/bin/env python3
|
|
import os
|
|
import time
|
|
import json
|
|
import sys
|
|
import paramiko
|
|
import time
|
|
import pysftp
|
|
import logging
|
|
|
|
def main():
|
|
import time as time1
|
|
start = time1.time()
|
|
cnopts = pysftp.CnOpts()
|
|
cnopts.hostkeys = None
|
|
try:
|
|
|
|
sftp = pysftp.Connection(
|
|
host="10.129.28.219",
|
|
username="faasapp",
|
|
password="1234",
|
|
cnopts=cnopts
|
|
)
|
|
logging.info("connection established successfully")
|
|
except:
|
|
logging.info('failed to establish connection to targeted server')
|
|
|
|
contour_directory = "contoured-images"
|
|
is_contour_dir = os.path.isdir(contour_directory)
|
|
if(is_contour_dir == False):
|
|
os.mkdir(contour_directory)
|
|
|
|
edge_detect__directory = "edge-detected-images"
|
|
is_edgedetect_dir = os.path.isdir(edge_detect__directory)
|
|
if(is_edgedetect_dir == False):
|
|
os.mkdir(edge_detect__directory)
|
|
|
|
remote_download_path_contour = "/home/faasapp/Desktop/anubhav/contour-finding/"+contour_directory
|
|
remote_download_path_edge_detection = "/home/faasapp/Desktop/anubhav/edge-detection/"+edge_detect__directory
|
|
|
|
|
|
remote_upload_path_contour = "/home/faasapp/Desktop/anubhav/assemble_images/"+contour_directory
|
|
remote_upload_path_edge_detect = "/home/faasapp/Desktop/anubhav/assemble_images/"+edge_detect__directory
|
|
|
|
try:
|
|
sftp.chdir(remote_download_path_contour) # Test if remote_path exists
|
|
except IOError:
|
|
sftp.mkdir(remote_download_path_contour) # Create remote_path
|
|
sftp.chdir(remote_download_path_contour)
|
|
|
|
try:
|
|
sftp.chdir(remote_download_path_edge_detection) # Test if remote_path exists
|
|
except IOError:
|
|
sftp.mkdir(remote_download_path_edge_detection) # Create remote_path
|
|
sftp.chdir(remote_download_path_edge_detection)
|
|
|
|
try:
|
|
sftp.chdir(remote_upload_path_contour) # Test if remote_path exists
|
|
except IOError:
|
|
sftp.mkdir(remote_upload_path_contour) # Create remote_path
|
|
sftp.chdir(remote_upload_path_contour)
|
|
|
|
try:
|
|
sftp.chdir(remote_upload_path_edge_detect) # Test if remote_path exists
|
|
except IOError:
|
|
sftp.mkdir(remote_upload_path_edge_detect) # Create remote_path
|
|
sftp.chdir(remote_upload_path_edge_detect)
|
|
|
|
|
|
current_path = os.getcwd()
|
|
|
|
sftp.get_d(remote_download_path_contour,preserve_mtime=True,localdir=contour_directory)
|
|
sftp.put_d(current_path+"/"+contour_directory,preserve_mtime=True,remotepath=remote_upload_path_contour)
|
|
|
|
sftp.get_d(remote_download_path_edge_detection,preserve_mtime=True,localdir=edge_detect__directory)
|
|
sftp.put_d(current_path+"/"+edge_detect__directory,preserve_mtime=True,remotepath=remote_upload_path_edge_detect)
|
|
|
|
activation_id = os.environ.get('__OW_ACTIVATION_ID')
|
|
params = json.loads(sys.argv[1])
|
|
contour_mappings = params["value"][0]["image_contour_mappings"]
|
|
|
|
contour_exec_time = params["value"][0]["contour_execution_time"]
|
|
edge_detection_exec_time = params["value"][1]["edge_detection_execution_time"]
|
|
decode_execution_time = params["value"][0]["decode_execution_time"]
|
|
|
|
decode_images_sizes = params["value"][1]["decoded_images_size"]
|
|
contour_image_sizes = params["value"][0]["contour_detected_images_size"]
|
|
edge_detect_image_sizes = params["value"][1]["edge_detected_images_size"]
|
|
|
|
sorted_by_decode_image_sizes = sorted(decode_images_sizes.items(), key=lambda x:x[1], reverse=True)
|
|
sorted_contour_image_sizes = sorted(contour_image_sizes.items(), key=lambda x:x[1], reverse=True)
|
|
sorted_by_edge_detect_image_sizes = sorted(edge_detect_image_sizes.items(), key=lambda x:x[1], reverse=True)
|
|
|
|
highest_decode_image_size = sorted_by_decode_image_sizes[0][0]
|
|
highest_contour_images = sorted_contour_image_sizes[0][0]
|
|
highest_edge_detected_images = sorted_by_edge_detect_image_sizes[0][0]
|
|
|
|
# edge_detection_output = params["value"][1]["edge_detection_output"]
|
|
# contour_detection_output = params["value"][0]["contour_images"]
|
|
|
|
sorted_images_by_no_of_contours = sorted(contour_mappings.items(), key=lambda x:x[1], reverse=True)
|
|
highest_number_of_contour_line_image = sorted_images_by_no_of_contours[0][0]
|
|
|
|
end = time1.time()
|
|
assemble_exec_time = end-start
|
|
|
|
|
|
|
|
print(json.dumps({ "assemble_activation_id": str(activation_id),
|
|
"contour_exec_time": contour_exec_time,
|
|
"assemble_exec_time": assemble_exec_time,
|
|
"edge_detect_time": edge_detection_exec_time,
|
|
"decode_time": decode_execution_time,
|
|
"contour_lines_image_mappings": contour_mappings,
|
|
"image_with_highest_number_of_contour_lines": highest_number_of_contour_line_image,
|
|
"decode_image_sizes": decode_images_sizes,
|
|
"contour_image_sizes": contour_image_sizes,
|
|
"edge_detected_image_sizes": edge_detect_image_sizes,
|
|
"highest_size_decode_image": highest_decode_image_size,
|
|
"highest_contour_image" : highest_contour_images,
|
|
"highest_edge_detected_image": highest_edge_detected_images
|
|
}))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |