You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
6.6 KiB
167 lines
6.6 KiB
#!/usr/bin/env python3
|
|
import requests
|
|
import os
|
|
import boto3
|
|
import redis
|
|
import pickle
|
|
import json
|
|
import cv2
|
|
import sys
|
|
|
|
def main():
|
|
|
|
images_dir = "face-detected-images"
|
|
is_images_dir = os.path.isdir(images_dir)
|
|
if(is_images_dir == False):
|
|
os.mkdir(images_dir)
|
|
r = redis.Redis(host="10.129.28.219", port=6379, db=2)
|
|
activation_id = os.environ.get('__OW_ACTIVATION_ID')
|
|
params = json.loads(sys.argv[1])
|
|
face_detected_result = []
|
|
try:
|
|
decode_activation_id = params["activation_id"]
|
|
parts = params["parts"]
|
|
for i in range(0,parts):
|
|
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
|
|
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
|
|
for i in range(0,parts):
|
|
decode_output = "decode-output-image"+decode_activation_id+"-"+str(i)
|
|
load_image = pickle.loads(r.get(decode_output))
|
|
image_name = 'Image'+str(i)+'.jpg'
|
|
with open(image_name, 'wb') as f:
|
|
f.write(load_image)
|
|
|
|
img = cv2.imread(image_name)
|
|
# Load Haar cascade for face detection
|
|
face_cascade = cv2.CascadeClassifier('../haarcascade_frontalface_default.xml')
|
|
|
|
# Convert to grayscale
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
# Detect faces
|
|
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
|
|
|
# Draw bounding boxes around faces
|
|
for (x,y,w,h) in faces:
|
|
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)[]
|
|
# face = img[y:y+h, x:x+w]
|
|
# # Apply a Gaussian blur to the face ROI
|
|
# blurred_face = cv2.GaussianBlur(face, (23, 23), 30)
|
|
# # Replace the face ROI with the blurred face
|
|
# img[y:y+h, x:x+w] = blurred_face
|
|
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
|
|
# face_blurred_image = images_dir+'/face_blurred_image_'+str(i)+'.jpg'
|
|
|
|
cv2.imwrite(output_image, img)
|
|
# cv2.imwrite(face_blurred_image, blurred_face)
|
|
|
|
imag = open(output_image,"rb").read()
|
|
pickled_object = pickle.dumps(imag)
|
|
face_detected_output = "face-detected-image"+activation_id+"-"+str(i)
|
|
print(pickled_object)
|
|
r.set(face_detected_output,pickled_object)
|
|
|
|
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
|
|
|
|
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
|
aws_region = os.getenv('AWS_REGION')
|
|
|
|
|
|
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
|
|
|
|
|
|
bucket_name = 'dagit-store'
|
|
folder_path = images_dir
|
|
folder_name = images_dir
|
|
for subdir, dirs, files in os.walk(folder_path):
|
|
for file in files:
|
|
file_path = os.path.join(subdir, file)
|
|
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
|
|
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
|
|
url_list=[]
|
|
for image in face_detected_result:
|
|
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
|
|
url_list.append(url)
|
|
|
|
print(json.dumps({"face_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"parts": parts
|
|
|
|
|
|
}))
|
|
|
|
return({"face_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"parts": parts
|
|
|
|
|
|
})
|
|
|
|
except Exception as e: #If not running as a part of DAG workflow and implemented as a single standalone function
|
|
image_url_list = params["image_url_links"]
|
|
parts = len(image_url_list)
|
|
for i in range(0,parts):
|
|
if os.path.exists(images_dir+'/face_detected_image_'+str(i)+'.jpg'):
|
|
os.remove(images_dir+'/face_detected_image_'+str(i)+'.jpg')
|
|
for i in range(0,parts):
|
|
response = requests.get(image_url_list[i])
|
|
image_name = 'Image'+str(i)+'.jpg'
|
|
with open(image_name, "wb") as f:
|
|
f.write(response.content)
|
|
img = cv2.imread(image_name)
|
|
# Load Haar cascade for face detection
|
|
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
|
|
|
# Convert to grayscale
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
# Detect faces
|
|
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
|
|
|
# Draw bounding boxes around faces
|
|
for (x,y,w,h) in faces:
|
|
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
|
|
output_image = images_dir+'/face_detected_image_'+str(i)+'.jpg'
|
|
cv2.imwrite(output_image, img)
|
|
|
|
face_detected_result.append('face_detected_image_'+str(i)+'.jpg')
|
|
|
|
|
|
|
|
aws_access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
aws_secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
|
aws_region = os.getenv('AWS_REGION')
|
|
|
|
|
|
s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=aws_region)
|
|
|
|
|
|
bucket_name = 'dagit-store'
|
|
folder_path = images_dir
|
|
folder_name = images_dir
|
|
for subdir, dirs, files in os.walk(folder_path):
|
|
for file in files:
|
|
file_path = os.path.join(subdir, file)
|
|
s3.upload_file(file_path, bucket_name, f'{folder_name}/{file_path.split("/")[-1]}')
|
|
s3.put_object_acl(Bucket=bucket_name, Key=f'{folder_name}/{file_path.split("/")[-1]}', ACL='public-read')
|
|
url_list=[]
|
|
for image in face_detected_result:
|
|
url = "https://dagit-store.s3.ap-south-1.amazonaws.com/"+images_dir+"/"+image
|
|
url_list.append(url)
|
|
|
|
print(json.dumps({"face_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"parts": parts
|
|
|
|
}))
|
|
|
|
return({"face_detected_image_url_links":url_list,
|
|
"activation_id": str(activation_id),
|
|
"parts": parts,
|
|
"pickled_object":pickled_object
|
|
|
|
})
|
|
|
|
if __name__ == "__main__":
|
|
main() |