|
|
|
@ -30,8 +30,6 @@
|
|
|
|
|
#include <ck_pr.h>
|
|
|
|
|
#include <ck_spinlock.h>
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
|
|
struct ck_barrier_combining_queue {
|
|
|
|
|
struct ck_barrier_combining_group *head;
|
|
|
|
|
struct ck_barrier_combining_group *tail;
|
|
|
|
@ -91,7 +89,12 @@ ck_barrier_centralized(struct ck_barrier_centralized *barrier,
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This implementation of software combining tree barriers
|
|
|
|
|
* uses level order traversal to insert new thread groups
|
|
|
|
|
* into the barrier's tree. We use a queue to implement this
|
|
|
|
|
* traversal.
|
|
|
|
|
*/
|
|
|
|
|
CK_CC_INLINE static void
|
|
|
|
|
ck_barrier_combining_queue_enqueue(struct ck_barrier_combining_queue *queue,
|
|
|
|
|
struct ck_barrier_combining_group *node_value)
|
|
|
|
@ -123,41 +126,46 @@ ck_barrier_combining_queue_dequeue(struct ck_barrier_combining_queue *queue)
|
|
|
|
|
return (front);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CK_CC_INLINE static void
|
|
|
|
|
ck_barrier_combining_insert(struct ck_barrier_combining_group *parent,
|
|
|
|
|
struct ck_barrier_combining_group *tnode,
|
|
|
|
|
struct ck_barrier_combining_group **child)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
*child = tnode;
|
|
|
|
|
tnode->parent = parent;
|
|
|
|
|
/*
|
|
|
|
|
* After inserting, we must increment the parent group's count for
|
|
|
|
|
* number of threads expected to reach it; otherwise, the
|
|
|
|
|
* barrier may end prematurely.
|
|
|
|
|
*/
|
|
|
|
|
++parent->k;
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This tries to insert a new thread group as a child of the given
|
|
|
|
|
* parent group.
|
|
|
|
|
*/
|
|
|
|
|
CK_CC_INLINE static bool
|
|
|
|
|
ck_barrier_combining_try_insert(struct ck_barrier_combining_group *parent,
|
|
|
|
|
struct ck_barrier_combining_group *tnode,
|
|
|
|
|
struct ck_barrier_combining_group **child)
|
|
|
|
|
struct ck_barrier_combining_group *tnode)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
if (*child == NULL) {
|
|
|
|
|
*child = tnode;
|
|
|
|
|
tnode->parent = parent;
|
|
|
|
|
parent->k++;
|
|
|
|
|
if (parent->lchild == NULL) {
|
|
|
|
|
ck_barrier_combining_insert(parent, tnode, &parent->lchild);
|
|
|
|
|
|
|
|
|
|
return (true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (false);
|
|
|
|
|
}
|
|
|
|
|
if (parent->rchild == NULL) {
|
|
|
|
|
ck_barrier_combining_insert(parent, tnode, &parent->rchild);
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
ck_barrier_combining_aux(struct ck_barrier_combining *barrier,
|
|
|
|
|
struct ck_barrier_combining_group *tnode,
|
|
|
|
|
unsigned int sense)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
if (ck_pr_faa_uint(&tnode->count, 1) == tnode->k - 1) {
|
|
|
|
|
if (tnode->parent != NULL)
|
|
|
|
|
ck_barrier_combining_aux(barrier, tnode->parent, sense);
|
|
|
|
|
|
|
|
|
|
ck_pr_store_uint(&tnode->count, 0);
|
|
|
|
|
ck_pr_store_uint(&tnode->sense, ~tnode->sense);
|
|
|
|
|
} else {
|
|
|
|
|
while (sense != ck_pr_load_uint(&tnode->sense))
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
return (true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
return (false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
@ -175,17 +183,23 @@ ck_barrier_combining_group_init(struct ck_barrier_combining *root,
|
|
|
|
|
tnode->sense = 0;
|
|
|
|
|
tnode->lchild = tnode->rchild = NULL;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The lock here simplifies insertion logic (no CAS required in this case).
|
|
|
|
|
* It prevents concurrent threads from overwriting insertions.
|
|
|
|
|
*/
|
|
|
|
|
ck_spinlock_fas_lock(&root->mutex);
|
|
|
|
|
ck_barrier_combining_queue_enqueue(&queue, root->root);
|
|
|
|
|
while (queue.head != NULL) {
|
|
|
|
|
node = ck_barrier_combining_queue_dequeue(&queue);
|
|
|
|
|
|
|
|
|
|
if (ck_barrier_combining_try_insert(node, tnode, &node->lchild) == true)
|
|
|
|
|
goto leave;
|
|
|
|
|
|
|
|
|
|
if (ck_barrier_combining_try_insert(node, tnode, &node->rchild) == true)
|
|
|
|
|
/* Attempt to insert the new group as a child of the current node. */
|
|
|
|
|
if (ck_barrier_combining_try_insert(node, tnode) == true)
|
|
|
|
|
goto leave;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If unsuccessful, try inserting as a child of the children of the
|
|
|
|
|
* current node.
|
|
|
|
|
*/
|
|
|
|
|
ck_barrier_combining_queue_enqueue(&queue, node->lchild);
|
|
|
|
|
ck_barrier_combining_queue_enqueue(&queue, node->rchild);
|
|
|
|
|
}
|
|
|
|
@ -209,6 +223,36 @@ ck_barrier_combining_init(struct ck_barrier_combining *root,
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
ck_barrier_combining_aux(struct ck_barrier_combining *barrier,
|
|
|
|
|
struct ck_barrier_combining_group *tnode,
|
|
|
|
|
unsigned int sense)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If this is the last thread in the group,
|
|
|
|
|
* it moves on to the parent group. Otherwise, it
|
|
|
|
|
* spins on this group's sense.
|
|
|
|
|
*/
|
|
|
|
|
if (ck_pr_faa_uint(&tnode->count, 1) == tnode->k - 1) {
|
|
|
|
|
if (tnode->parent != NULL)
|
|
|
|
|
ck_barrier_combining_aux(barrier, tnode->parent, sense);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Once the thread returns from its parent(s), it reinitializes
|
|
|
|
|
* the group's arrival count and frees the threads waiting at
|
|
|
|
|
* this group.
|
|
|
|
|
*/
|
|
|
|
|
ck_pr_store_uint(&tnode->count, 0);
|
|
|
|
|
ck_pr_store_uint(&tnode->sense, ~tnode->sense);
|
|
|
|
|
} else {
|
|
|
|
|
while (sense != ck_pr_load_uint(&tnode->sense))
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
ck_barrier_combining(struct ck_barrier_combining *barrier,
|
|
|
|
|
struct ck_barrier_combining_group *tnode,
|
|
|
|
@ -216,6 +260,8 @@ ck_barrier_combining(struct ck_barrier_combining *barrier,
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
ck_barrier_combining_aux(barrier, tnode, state->sense);
|
|
|
|
|
|
|
|
|
|
/* Set the thread's private sense for the next barrier. */
|
|
|
|
|
state->sense = ~state->sense;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
@ -240,7 +286,13 @@ ck_barrier_dissemination_init(struct ck_barrier_dissemination *barrier,
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < nthr; ++i) {
|
|
|
|
|
for (k = 0, offset = 1; k < size; ++k, offset <<= 1) {
|
|
|
|
|
/* Determine the thread's partner, j, for the current round. */
|
|
|
|
|
/*
|
|
|
|
|
* Determine the thread's partner, j, for the current round, k.
|
|
|
|
|
* Partners are chosen such that by the completion of the barrier,
|
|
|
|
|
* every thread has been directly (having one of its flag set) or
|
|
|
|
|
* indirectly (having one of its partners's flags set) signaled
|
|
|
|
|
* by every other thread in the barrier.
|
|
|
|
|
*/
|
|
|
|
|
if ((nthr & (nthr - 1)) == 0)
|
|
|
|
|
j = (i + offset) & (nthr - 1);
|
|
|
|
|
else
|
|
|
|
@ -293,9 +345,9 @@ ck_barrier_dissemination(struct ck_barrier_dissemination *barrier,
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Dissemination barriers use two sets of flags to prevent race conditions
|
|
|
|
|
* between successive calls to the barrier. It also uses
|
|
|
|
|
* a sense reversal technique to avoid re-initialization of the flags
|
|
|
|
|
* for every two calls to the barrier.
|
|
|
|
|
* between successive calls to the barrier. Parity indicates which set will
|
|
|
|
|
* be used for the next barrier. They also use a sense reversal technique
|
|
|
|
|
* to avoid re-initialization of the flags for every two calls to the barrier.
|
|
|
|
|
*/
|
|
|
|
|
if (state->parity == 1)
|
|
|
|
|
state->sense = ~state->sense;
|
|
|
|
@ -304,6 +356,13 @@ ck_barrier_dissemination(struct ck_barrier_dissemination *barrier,
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This is a tournament barrier implementation. Threads are statically
|
|
|
|
|
* assigned roles to perform for each round of the barrier. Winners
|
|
|
|
|
* move on to the next round, while losers spin in their current rounds
|
|
|
|
|
* on their own flags. During the last round, the champion of the tournament
|
|
|
|
|
* sets the last flag that begins the wakeup process.
|
|
|
|
|
*/
|
|
|
|
|
static unsigned int ck_barrier_tournament_tid;
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
@ -323,10 +382,7 @@ ck_barrier_tournament_round_init(struct ck_barrier_tournament_round **rounds,
|
|
|
|
|
|
|
|
|
|
size = ck_barrier_tournament_size(nthr);
|
|
|
|
|
for (i = 0; i < nthr; ++i) {
|
|
|
|
|
/*
|
|
|
|
|
* By intializing this outside of the inner loop, we can avoid
|
|
|
|
|
* checking k > 0 for every iteration.
|
|
|
|
|
*/
|
|
|
|
|
/* The first role is always DROPOUT. */
|
|
|
|
|
rounds[i][0].flag = 0;
|
|
|
|
|
rounds[i][0].role = DROPOUT;
|
|
|
|
|
for (k = 1, twok = 2, twokm1 = 1; k < size; ++k, twokm1 = twok, twok <<= 1) {
|
|
|
|
@ -341,6 +397,8 @@ ck_barrier_tournament_round_init(struct ck_barrier_tournament_round **rounds,
|
|
|
|
|
}
|
|
|
|
|
if (imod2k == twokm1)
|
|
|
|
|
rounds[i][k].role = LOSER;
|
|
|
|
|
|
|
|
|
|
/* There is exactly one cHAMPION in a tournament barrier. */
|
|
|
|
|
else if ((i == 0) && (twok >= nthr))
|
|
|
|
|
rounds[i][k].role = CHAMPION;
|
|
|
|
|
|
|
|
|
@ -368,10 +426,14 @@ ck_barrier_tournament(struct ck_barrier_tournament_round **rounds,
|
|
|
|
|
int round = 1;
|
|
|
|
|
|
|
|
|
|
for (;; ++round) {
|
|
|
|
|
switch (rounds[state->vpid][round].role) { // MIGHT NEED TO USE CK_PR_LOAD
|
|
|
|
|
switch (rounds[state->vpid][round].role) { // MIGHT NEED TO USE CK_PR_LOAD***
|
|
|
|
|
case BYE:
|
|
|
|
|
break;
|
|
|
|
|
case CHAMPION:
|
|
|
|
|
/*
|
|
|
|
|
* The CHAMPION waits until it wins the tournament; it then
|
|
|
|
|
* sets the final flag before the wakeup phase of the barrier.
|
|
|
|
|
*/
|
|
|
|
|
while (ck_pr_load_uint(&rounds[state->vpid][round].flag) != state->sense)
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
ck_pr_store_uint(rounds[state->vpid][round].opponent, state->sense);
|
|
|
|
@ -381,12 +443,20 @@ ck_barrier_tournament(struct ck_barrier_tournament_round **rounds,
|
|
|
|
|
/* NOTREACHED */
|
|
|
|
|
break;
|
|
|
|
|
case LOSER:
|
|
|
|
|
/*
|
|
|
|
|
* LOSERs set the flags of their opponents and wait until
|
|
|
|
|
* their opponents release them after the tournament is over.
|
|
|
|
|
*/
|
|
|
|
|
ck_pr_store_uint(rounds[state->vpid][round].opponent, state->sense);
|
|
|
|
|
while (ck_pr_load_uint(&rounds[state->vpid][round].flag) != state->sense)
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
goto wakeup;
|
|
|
|
|
break;
|
|
|
|
|
case WINNER:
|
|
|
|
|
/*
|
|
|
|
|
* WINNERs wait until their current opponent sets their flag; they then
|
|
|
|
|
* continue to the next round of the tournament.
|
|
|
|
|
*/
|
|
|
|
|
while (ck_pr_load_uint(&rounds[state->vpid][round].flag) != state->sense)
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
break;
|
|
|
|
@ -394,7 +464,7 @@ ck_barrier_tournament(struct ck_barrier_tournament_round **rounds,
|
|
|
|
|
}
|
|
|
|
|
wakeup:
|
|
|
|
|
for (round -= 1;; --round) {
|
|
|
|
|
switch (rounds[state->vpid][round].role) { // MIGHT NEED TO USE CK_PR_LOAD
|
|
|
|
|
switch (rounds[state->vpid][round].role) { // MIGHT NEED TO USE CK_PR_LOAD***
|
|
|
|
|
case BYE:
|
|
|
|
|
break;
|
|
|
|
|
case CHAMPION:
|
|
|
|
@ -407,6 +477,10 @@ wakeup:
|
|
|
|
|
/* NOTREACHED */
|
|
|
|
|
break;
|
|
|
|
|
case WINNER:
|
|
|
|
|
/*
|
|
|
|
|
* Winners inform their old opponents the tournament is over
|
|
|
|
|
* by setting their flags.
|
|
|
|
|
*/
|
|
|
|
|
ck_pr_store_uint(rounds[state->vpid][round].opponent, state->sense);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
@ -427,22 +501,33 @@ ck_barrier_mcs_init(struct ck_barrier_mcs *barrier,
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < nthr; ++i) {
|
|
|
|
|
for (j = 0; j < 4; ++j) {
|
|
|
|
|
barrier[i].havechild[j] = ((i << 2) + j < nthr - 1) ?
|
|
|
|
|
~0 :
|
|
|
|
|
/*
|
|
|
|
|
If there are still threads that don't have parents,
|
|
|
|
|
* add it as a child.
|
|
|
|
|
*/
|
|
|
|
|
barrier[i].havechild[j] = ((i << 2) + j < nthr - 1) ?
|
|
|
|
|
~0 :
|
|
|
|
|
0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Childnotready is initialized to havechild to ensure
|
|
|
|
|
* a thread does not wait for a child that does not exist.
|
|
|
|
|
*/
|
|
|
|
|
barrier[i].childnotready[j] = barrier[i].havechild[j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
barrier[i].parent = (i == 0) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
/* The root thread does not have a parent. */
|
|
|
|
|
barrier[i].parent = (i == 0) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
&barrier[(i - 1) >> 2].childnotready[(i - 1) & 3];
|
|
|
|
|
|
|
|
|
|
barrier[i].children[0] = ((i << 1) + 1 >= nthr) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
/* Leaf threads do not have any children. */
|
|
|
|
|
barrier[i].children[0] = ((i << 1) + 1 >= nthr) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
&barrier[(i << 1) + 1].parentsense;
|
|
|
|
|
|
|
|
|
|
barrier[i].children[1] = ((i << 1) + 2 >= nthr) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
barrier[i].children[1] = ((i << 1) + 2 >= nthr) ?
|
|
|
|
|
&barrier[i].dummy :
|
|
|
|
|
&barrier[(i << 1) + 2].parentsense;
|
|
|
|
|
|
|
|
|
|
barrier[i].parentsense = 0;
|
|
|
|
@ -489,19 +574,29 @@ ck_barrier_mcs(struct ck_barrier_mcs *barrier,
|
|
|
|
|
struct ck_barrier_mcs_state *state)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Wait until all children have reached the barrier and are done waiting
|
|
|
|
|
* for their children.
|
|
|
|
|
*/
|
|
|
|
|
while (ck_barrier_mcs_check_children(barrier[state->vpid].childnotready) == false)
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
|
|
|
|
|
/* Reinitialize for next barrier. */
|
|
|
|
|
ck_barrier_mcs_reinitialize_children(&barrier[state->vpid]);
|
|
|
|
|
|
|
|
|
|
/* Inform parent thread and its children have arrived at the barrier. */
|
|
|
|
|
ck_pr_store_uint(barrier[state->vpid].parent, 0);
|
|
|
|
|
|
|
|
|
|
/* Wait until parent indicates all threads have arrived at the barrier. */
|
|
|
|
|
if (state->vpid != 0) {
|
|
|
|
|
while (ck_pr_load_uint(&barrier[state->vpid].parentsense) != state->sense)
|
|
|
|
|
ck_pr_stall();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Inform children of successful barrier. */
|
|
|
|
|
ck_pr_store_uint(barrier[state->vpid].children[0], state->sense);
|
|
|
|
|
ck_pr_store_uint(barrier[state->vpid].children[1], state->sense);
|
|
|
|
|
|
|
|
|
|
state->sense = ~state->sense;
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|