You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

475 lines
14 KiB

#ifndef PRIORITY_QUEUE_H
#define PRIORITY_QUEUE_H
#include "lock.h"
#include "listener_thread.h"
#include "panic.h"
#include "priority_queue.h"
#include "runtime.h"
#include "worker_thread.h"
/**
* How to get the priority out of the generic element
* We assume priority is expressed as an unsigned 64-bit integer (i.e. cycles or
* UNIX time in ms). This is used to maintain a read replica of the highest
* priority element that can be used to maintain a read replica
* @param element
* @returns priority (a uint64_t)
*/
typedef uint64_t (*priority_queue_get_priority_fn_t)(void *element);
/* We assume that priority is expressed in terms of a 64 bit unsigned integral */
struct priority_queue {
priority_queue_get_priority_fn_t get_priority_fn;
bool use_lock;
lock_t lock;
uint64_t highest_priority;
size_t size;
size_t capacity;
void * items[];
};
/**
* Peek at the priority of the highest priority task without having to take the lock
* Because this is a min-heap PQ, the highest priority is the lowest 64-bit integer
* This is used to store an absolute deadline
* @returns value of highest priority value in queue or ULONG_MAX if empty
*/
static inline uint64_t
priority_queue_peek(struct priority_queue *self)
{
return self->highest_priority;
}
static inline void
priority_queue_update_highest_priority(struct priority_queue *self, const uint64_t priority)
{
self->highest_priority = priority;
}
/**
* Adds a value to the end of the binary heap
* @param self the priority queue
* @param new_item the value we are adding
* @return 0 on success. -ENOSPC when priority queue is full
*/
static inline int
priority_queue_append(struct priority_queue *self, void *new_item)
{
assert(self != NULL);
assert(new_item != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
int rc;
if (unlikely(self->size + 1 > self->capacity)) panic("PQ overflow");
if (unlikely(self->size + 1 == self->capacity)) goto err_enospc;
self->items[++self->size] = new_item;
rc = 0;
done:
return rc;
err_enospc:
rc = -ENOSPC;
goto done;
}
/**
* Checks if a priority queue is empty
* @param self the priority queue to check
* @returns true if empty, else otherwise
*/
static inline bool
priority_queue_is_empty(struct priority_queue *self)
{
assert(self != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
return self->size == 0;
}
/**
* Shifts an appended value upwards to restore heap structure property
* @param self the priority queue
*/
static inline void
priority_queue_percolate_up(struct priority_queue *self)
{
assert(self != NULL);
assert(self->get_priority_fn != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
/* If there's only one element, set memoized lookup and early out */
if (self->size == 1) {
priority_queue_update_highest_priority(self, self->get_priority_fn(self->items[1]));
return;
}
for (int i = self->size;
i / 2 != 0 && self->get_priority_fn(self->items[i]) < self->get_priority_fn(self->items[i / 2]); i /= 2) {
assert(self->get_priority_fn(self->items[i]) != ULONG_MAX);
void *temp = self->items[i / 2];
self->items[i / 2] = self->items[i];
self->items[i] = temp;
/* If percolated to highest priority, update highest priority */
if (i / 2 == 1) priority_queue_update_highest_priority(self, self->get_priority_fn(self->items[1]));
}
}
/**
* Returns the index of a node's smallest child
* @param self the priority queue
* @param parent_index
* @returns the index of the smallest child
*/
static inline int
priority_queue_find_smallest_child(struct priority_queue *self, const int parent_index)
{
assert(self != NULL);
assert(parent_index >= 1 && parent_index <= self->size);
assert(self->get_priority_fn != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
int left_child_index = 2 * parent_index;
int right_child_index = 2 * parent_index + 1;
assert(self->items[left_child_index] != NULL);
int smallest_child_idx;
/* If we don't have a right child or the left child is smaller, return it */
if (right_child_index > self->size) {
smallest_child_idx = left_child_index;
} else if (self->get_priority_fn(self->items[left_child_index])
< self->get_priority_fn(self->items[right_child_index])) {
smallest_child_idx = left_child_index;
} else {
/* Otherwise, return the right child */
smallest_child_idx = right_child_index;
}
return smallest_child_idx;
}
/**
* Shifts the top of the heap downwards. Used after placing the last value at
* the top
* @param self the priority queue
*/
static inline void
priority_queue_percolate_down(struct priority_queue *self, int parent_index)
{
assert(self != NULL);
assert(self->get_priority_fn != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
assert(!listener_thread_is_running());
bool update_highest_value = parent_index == 1;
int left_child_index = 2 * parent_index;
while (left_child_index >= 2 && left_child_index <= self->size) {
int smallest_child_index = priority_queue_find_smallest_child(self, parent_index);
/* Once the parent is equal to or less than its smallest child, break; */
if (self->get_priority_fn(self->items[parent_index])
<= self->get_priority_fn(self->items[smallest_child_index]))
break;
/* Otherwise, swap and continue down the tree */
void *temp = self->items[smallest_child_index];
self->items[smallest_child_index] = self->items[parent_index];
self->items[parent_index] = temp;
parent_index = smallest_child_index;
left_child_index = 2 * parent_index;
}
/* Update memoized value if we touched the head */
if (update_highest_value) {
if (!priority_queue_is_empty(self)) {
priority_queue_update_highest_priority(self, self->get_priority_fn(self->items[1]));
} else {
priority_queue_update_highest_priority(self, ULONG_MAX);
}
}
}
/*********************
* Public API *
********************/
/**
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the dequeued element
* @param target_deadline the deadline that the request must be earlier than in order to dequeue
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty or if none meet target_deadline
*/
static inline int
priority_queue_dequeue_if_earlier_nolock(struct priority_queue *self, void **dequeued_element, uint64_t target_deadline)
{
assert(self != NULL);
assert(dequeued_element != NULL);
assert(self->get_priority_fn != NULL);
assert(!listener_thread_is_running());
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
int return_code;
/* If the dequeue is not higher priority (earlier timestamp) than targed_deadline, return immediately */
if (priority_queue_is_empty(self) || self->highest_priority >= target_deadline) goto err_enoent;
*dequeued_element = self->items[1];
self->items[1] = self->items[self->size];
self->items[self->size--] = NULL;
priority_queue_percolate_down(self, 1);
return_code = 0;
done:
return return_code;
err_enoent:
return_code = -ENOENT;
goto done;
}
/**
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the dequeued element
* @param target_deadline the deadline that the request must be earlier than in order to dequeue
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty or if none meet target_deadline
*/
static inline int
priority_queue_dequeue_if_earlier(struct priority_queue *self, void **dequeued_element, uint64_t target_deadline)
{
int return_code;
LOCK_LOCK(&self->lock);
return_code = priority_queue_dequeue_if_earlier_nolock(self, dequeued_element, target_deadline);
LOCK_UNLOCK(&self->lock);
return return_code;
}
/**
* Initialized the Priority Queue Data structure
* @param capacity the number of elements to store in the data structure
* @param use_lock indicates that we want a concurrent data structure
* @param get_priority_fn pointer to a function that returns the priority of an element
* @return priority queue
*/
static inline struct priority_queue *
priority_queue_initialize(size_t capacity, bool use_lock, priority_queue_get_priority_fn_t get_priority_fn)
{
assert(get_priority_fn != NULL);
/* Add one to capacity because this data structure ignores the element at 0 */
size_t one_based_capacity = capacity + 1;
struct priority_queue *self = calloc(sizeof(struct priority_queue) + sizeof(void *) * one_based_capacity, 1);
/* We're assuming a min-heap implementation, so set to larget possible value */
priority_queue_update_highest_priority(self, ULONG_MAX);
self->size = 0;
self->capacity = one_based_capacity; // Add one because we skip element 0
self->get_priority_fn = get_priority_fn;
self->use_lock = use_lock;
if (use_lock) LOCK_INIT(&self->lock);
return self;
}
/**
* Free the Priority Queue Data structure
* @param self the priority_queue to initialize
*/
static inline void
priority_queue_free(struct priority_queue *self)
{
assert(self != NULL);
free(self);
}
/**
* @param self the priority_queue
* @returns the number of elements in the priority queue
*/
static inline int
priority_queue_length_nolock(struct priority_queue *self)
{
assert(self != NULL);
assert(!listener_thread_is_running());
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
return self->size;
}
/**
* @param self the priority_queue
* @returns the number of elements in the priority queue
*/
static inline int
priority_queue_length(struct priority_queue *self)
{
LOCK_LOCK(&self->lock);
int size = priority_queue_length_nolock(self);
LOCK_UNLOCK(&self->lock);
return size;
}
/**
* @param self - the priority queue we want to add to
* @param value - the value we want to add
* @returns 0 on success. -ENOSPC on full.
*/
static inline int
priority_queue_enqueue_nolock(struct priority_queue *self, void *value)
{
assert(self != NULL);
assert(value != NULL);
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
int rc;
if (unlikely(priority_queue_append(self, value) == -ENOSPC)) goto err_enospc;
priority_queue_percolate_up(self);
rc = 0;
done:
return rc;
err_enospc:
rc = -ENOSPC;
goto done;
}
/**
* @param self - the priority queue we want to add to
* @param value - the value we want to add
* @returns 0 on success. -ENOSPC on full.
*/
static inline int
priority_queue_enqueue(struct priority_queue *self, void *value)
{
int rc;
LOCK_LOCK(&self->lock);
rc = priority_queue_enqueue_nolock(self, value);
LOCK_UNLOCK(&self->lock);
return rc;
}
/**
* @param self - the priority queue we want to delete from
* @param value - the value we want to delete
* @returns 0 on success. -1 on not found
*/
static inline int
priority_queue_delete_nolock(struct priority_queue *self, void *value)
{
assert(self != NULL);
assert(value != NULL);
assert(!listener_thread_is_running());
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
for (int i = 1; i <= self->size; i++) {
if (self->items[i] == value) {
self->items[i] = self->items[self->size];
self->items[self->size--] = NULL;
priority_queue_percolate_down(self, i);
return 0;
}
}
return -1;
}
/**
* @param self - the priority queue we want to delete from
* @param value - the value we want to delete
* @returns 0 on success. -1 on not found
*/
static inline int
priority_queue_delete(struct priority_queue *self, void *value)
{
int rc;
LOCK_LOCK(&self->lock);
rc = priority_queue_delete_nolock(self, value);
LOCK_UNLOCK(&self->lock);
return rc;
}
/**
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the dequeued element
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty
*/
static inline int
priority_queue_dequeue(struct priority_queue *self, void **dequeued_element)
{
return priority_queue_dequeue_if_earlier(self, dequeued_element, UINT64_MAX);
}
/**
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the dequeued element
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty
*/
static inline int
priority_queue_dequeue_nolock(struct priority_queue *self, void **dequeued_element)
{
return priority_queue_dequeue_if_earlier_nolock(self, dequeued_element, UINT64_MAX);
}
/**
* Returns the top of the priority queue without removing it
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the top element
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty
*/
static inline int
priority_queue_top_nolock(struct priority_queue *self, void **dequeued_element)
{
assert(self != NULL);
assert(dequeued_element != NULL);
assert(self->get_priority_fn != NULL);
assert(!listener_thread_is_running());
assert(!self->use_lock || LOCK_IS_LOCKED(&self->lock));
int return_code;
if (priority_queue_is_empty(self)) goto err_enoent;
*dequeued_element = self->items[1];
return_code = 0;
done:
return return_code;
err_enoent:
return_code = -ENOENT;
goto done;
}
/**
* Returns the top of the priority queue without removing it
* @param self - the priority queue we want to add to
* @param dequeued_element a pointer to set to the top element
* @returns RC 0 if successfully set dequeued_element, -ENOENT if empty
*/
static inline int
priority_queue_top(struct priority_queue *self, void **dequeued_element)
{
int return_code;
LOCK_LOCK(&self->lock);
return_code = priority_queue_top_nolock(self, dequeued_element);
LOCK_UNLOCK(&self->lock);
return return_code;
}
#endif /* PRIORITY_QUEUE_H */