#!/bin/bash # This experiment is intended to document how the level of concurrent requests influence the latency, throughput, and success/failure rate # Success - The percentage of requests that complete by their deadlines # TODO: Does this handle non-200s? # Throughput - The mean number of successful requests per second # Latency - the rount-trip resonse time (unit?) of successful requests at the p50, p90, p99, and p100 percetiles # Add bash_libraries directory to path __run_sh__base_path="$(dirname "$(realpath --logical "${BASH_SOURCE[0]}")")" __run_sh__bash_libraries_relative_path="../bash_libraries" __run_sh__bash_libraries_absolute_path=$(cd "$__run_sh__base_path" && cd "$__run_sh__bash_libraries_relative_path" && pwd) export PATH="$__run_sh__bash_libraries_absolute_path:$PATH" source csv_to_dat.sh || exit 1 source framework.sh || exit 1 # source generate_gnuplots.sh || exit 1 source get_result_count.sh || exit 1 source panic.sh || exit 1 source path_join.sh || exit 1 # Sends requests until the per-module perf window buffers are full # This ensures that Sledge has accurate estimates of execution time run_samples() { if (($# != 1)); then panic "invalid number of arguments \"$1\"" return 1 elif [[ -z "$1" ]]; then panic "hostname \"$1\" was empty" return 1 fi local hostname="${1}" # Scrape the perf window size from the source if possible # TODO: Make a util function local -r perf_window_path="$(path_join "$__run_sh__base_path" ../../include/perf_window.h)" local -i perf_window_buffer_size if ! perf_window_buffer_size=$(grep "#define PERF_WINDOW_BUFFER_SIZE" < "$perf_window_path" | cut -d\ -f3); then printf "Failed to scrape PERF_WINDOW_BUFFER_SIZE from ../../include/perf_window.h\n" printf "Defaulting to 16\n" perf_window_buffer_size=16 fi local -ir perf_window_buffer_size printf "Running Samples: " hey -n "$perf_window_buffer_size" -c "$perf_window_buffer_size" -cpus 3 -t 0 -o csv -m GET -d "40\n" "http://${hostname}:10040" || { printf "[ERR]\n" panic "fib40 samples failed with $?" return 1 } hey -n "$perf_window_buffer_size" -c "$perf_window_buffer_size" -cpus 3 -t 0 -o csv -m GET -d "10\n" "http://${hostname}:100010" || { printf "[ERR]\n" panic "fib10 samples failed with $?" return 1 } printf "[OK]\n" return 0 } # Execute the fib10 and fib40 experiments sequentially and concurrently # $1 (hostname) # $2 (results_directory) - a directory where we will store our results run_experiments() { if (($# != 2)); then panic "invalid number of arguments \"$1\"" return 1 elif [[ -z "$1" ]]; then panic "hostname \"$1\" was empty" return 1 elif [[ ! -d "$2" ]]; then panic "directory \"$2\" does not exist" return 1 fi local hostname="$1" local results_directory="$2" # The duration in seconds that we want the client to send requests local -ir duration_sec=15 # The duration in seconds that the low priority task should run before the high priority task starts local -ir offset=5 printf "Running Experiments\n" # Run each separately printf "\tfib40: " hey -z ${duration_sec}s -cpus 4 -c 100 -t 0 -o csv -m GET -d "40\n" "http://$hostname:10040" > "$results_directory/fib40.csv" 2> /dev/null || { printf "[ERR]\n" panic "fib40 failed" return 1 } get_result_count "$results_directory/fib40.csv" || { printf "[ERR]\n" panic "fib40 unexpectedly has zero requests" return 1 } printf "[OK]\n" printf "\tfib10: " hey -z ${duration_sec}s -cpus 4 -c 100 -t 0 -o csv -m GET -d "10\n" "http://$hostname:10010" > "$results_directory/fib10.csv" 2> /dev/null || { printf "[ERR]\n" panic "fib10 failed" return 1 } get_result_count "$results_directory/fib10.csv" || { printf "[ERR]\n" panic "fib10 unexpectedly has zero requests" return 1 } printf "[OK]\n" # Run concurrently # The lower priority has offsets to ensure it runs the entire time the high priority is trying to run # This asynchronously trigger jobs and then wait on their pids local fib40_con_PID local fib10_con_PID hey -z $((duration_sec + 2 * offset))s -cpus 2 -c 100 -t 0 -o csv -m GET -d "40\n" "http://${hostname}:10040" > "$results_directory/fib40_con.csv" 2> /dev/null & fib40_con_PID="$!" sleep $offset hey -z "${duration_sec}s" -cpus 2 -c 100 -t 0 -o csv -m GET -d "10\n" "http://${hostname}:10010" > "$results_directory/fib10_con.csv" 2> /dev/null & fib10_con_PID="$!" wait -f "$fib10_con_PID" || { printf "\tfib10_con: [ERR]\n" panic "failed to wait -f ${fib10_con_PID}" return 1 } get_result_count "$results_directory/fib10_con.csv" || { printf "\tfib10_con: [ERR]\n" panic "fib10_con has zero requests. This might be because fib40_con saturated the runtime" return 1 } printf "\tfib10_con: [OK]\n" wait -f "$fib40_con_PID" || { printf "\tfib40_con: [ERR]\n" panic "failed to wait -f ${fib40_con_PID}" return 1 } get_result_count "$results_directory/fib40_con.csv" || { printf "\tfib40_con: [ERR]\n" panic "fib40_con has zero requests." return 1 } printf "\tfib40_con: [OK]\n" return 0 } # Process the experimental results and generate human-friendly results for success rate, throughput, and latency process_results() { if (($# != 1)); then error_msg "invalid number of arguments ($#, expected 1)" return 1 elif ! [[ -d "$1" ]]; then error_msg "directory $1 does not exist" return 1 fi local -r results_directory="$1" printf "Processing Results: " # Write headers to CSVs printf "Payload,Success_Rate\n" >> "$results_directory/success.csv" printf "Payload,Throughput\n" >> "$results_directory/throughput.csv" printf "Payload,p50,p90,p99,p100\n" >> "$results_directory/latency.csv" # The four types of results that we are capturing. # fib10 and fib 40 are run sequentially. # fib10_con and fib40_con are run concurrently local -ar payloads=(fib10 fib10_con fib40 fib40_con) # The deadlines for each of the workloads # TODO: Scrape these from spec.json local -Ar deadlines_ms=( [fib10]=2 [fib40]=3000 ) for payload in "${payloads[@]}"; do # Strip the _con suffix when getting the deadline local -i deadline=${deadlines_ms[${payload/_con/}]} # Calculate Success Rate for csv (percent of requests that return 200 within deadline) awk -F, ' $7 == 200 && ($1 * 1000) <= '"$deadline"' {ok++} END{printf "'"$payload"',%3.5f\n", (ok / (NR - 1) * 100)} ' < "$results_directory/$payload.csv" >> "$results_directory/success.csv" # Filter on 200s, convert from s to ms, and sort awk -F, '$7 == 200 {print ($1 * 1000)}' < "$results_directory/$payload.csv" \ | sort -g > "$results_directory/$payload-response.csv" # Get Number of 200s oks=$(wc -l < "$results_directory/$payload-response.csv") ((oks == 0)) && continue # If all errors, skip line # We determine duration by looking at the timestamp of the last complete request # TODO: Should this instead just use the client-side synthetic duration_sec value? duration=$(tail -n1 "$results_directory/$payload.csv" | cut -d, -f8) # Throughput is calculated as the mean number of successful requests per second throughput=$(echo "$oks/$duration" | bc) printf "%s,%f\n" "$payload" "$throughput" >> "$results_directory/throughput.csv" # Generate Latency Data for csv awk ' BEGIN { sum = 0 p50 = int('"$oks"' * 0.5) p90 = int('"$oks"' * 0.9) p99 = int('"$oks"' * 0.99) p100 = '"$oks"' printf "'"$payload"'," } NR==p50 {printf "%1.4f,", $0} NR==p90 {printf "%1.4f,", $0} NR==p99 {printf "%1.4f,", $0} NR==p100 {printf "%1.4f\n", $0} ' < "$results_directory/$payload-response.csv" >> "$results_directory/latency.csv" # Delete scratch file used for sorting/counting # rm -rf "$results_directory/$payload-response.csv" done # Transform csvs to dat files for gnuplot csv_to_dat "$results_directory/success.csv" "$results_directory/throughput.csv" "$results_directory/latency.csv" # Generate gnuplots. Commented out because we don't have *.gnuplots defined # generate_gnuplots "$results_directory" "$__run_sh__base_path" || { # printf "[ERR]\n" # panic "failed to generate gnuplots" # } printf "[OK]\n" return 0 } # Expected Symbol used by the framework experiment_main() { local -r target_hostname="$1" local -r results_directory="$2" run_samples "$target_hostname" || return 1 run_experiments "$target_hostname" "$results_directory" || return 1 process_results "$results_directory" || return 1 return 0 } main "$@"