
DAGit: A Platform For Enabling Serverless
Applications

Anubhav Jana, Purushottam Kulkarni and Umesh Bellur
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{anubhavjana, puru, umesh}@cse.iitb.ac.in

Abstract—Serverless computing is rapidly gaining popularity
for provisioning composable, auto-scalable and cost-effective
applications. An important mechanism for deploying serverless
applications is specification of function workflows (via DAGs).
The end-to-end life cycle of this process being DAG specification,
DAG orchestration, execution of DAG components and persistent
storage of application outputs. To the best of our knowledge,
an open-source platform that offers functionality along all these
components does not exist. Towards this, our primary contribu-
tion is DAGit, an open-source solution for serverless applications-
as-a-service. The main features of DAGit are interfaces and
specifications to register serverless functions, applications (via
DAGs) and triggers to instantiate the serverless applications.
DAGit provides a rich set of DAG primitives to enable a varied
set of applications and also implements a scalable orchestrator
for application execution. As part of this work, we present the
architecture and design details of DAGit, and demonstrate its
feature set via showcasing the specification and execution of a
varied set of serverless applications. Further, we also present
a performance and resource costs characterization of executing
applications on the DAGit platform.

Keywords— FaaS, serverless workflows, agile composition

I. INTRODUCTION

The function-as-a-service (FaaS) [1] model of serverless
computing is rapidly gaining popularity and several popular
available solutions and platforms are already available, e.g.,
AWS Lambda [2], IBM Cloud Functions [3], Microsoft
Azure Functions [4], Google Cloud Functions [5], Apache
OpenWhisk [6], Knative [7], OpenLambda [8] etc. A key
component of FaaS based cloud services is the decoupling of
the functionality and the setup and orchestration for executing
the associated function. Developers register functions (via
source code and/or services withing containers) and associate
them with triggers for event-based execution.
While the FaaS model provides on-demand functionality ser-
vice for applications, another mode of using the Faas model is
to compose complete applications as a workflow, the elements
of the workflow being serverless functions. Several examples
of applications as serverless workflows already exist — video
analytics [9] [10] [11], image processing and image based
analysis [11] [12], scientific applications and data processing
and inferencing [12]. DAGit aims to compliment efforts
to build such scalable and efficient serverless applications.
Figure 1 and Figure 2 show two such example applications
composed as a workflows of serverless functions. AMBER
Alert [13] [14] is an application, to processes traffic camera

Fig. 1: The Amber Alert application as a workflow.

Fig. 2: The Montage application as a workflow.

input and video feeds, decode them into frames, pre-process
each image, followed by using ML inference model for object
detection, and further refine the inference to detect faces or
cars. Similarly, Montage [15] is a scientific workflow appli-
cation which processes a set of input images from astronomic
sky surveys and outputs a single large scale mosaic image.
The application logic is embedded in a series of functions—
image projection, image background subtraction, and mosaic
fitting. These functions work together to re-project, align, and
combine input images, and to generate metadata including
information such as image location, size, and orientation
and preview images. As can be seen, even from these two
examples, applications as workflows involve linear ordering,
one-to-many and many-to-one data dependencies, conditional
branches etc.
Specifying applications as serverless workflows (as directed
graphs) is attractive not only because of the flexibility of
of choosing functions for composition, but also due to the
agility of updating and changing application logic. Not only a
new/different function implementation can be used to adapt a
workflow, workflows themselves can be updated via changes
to application composition specifications. The end-to-end life
cycle of this process being workflow specification, workflow
orchestration and data handling across workflow components,
execution of serverless functions (workflow components), fail-

ure handling and persistent storage of outputs.
An important aspect of enabling the applications as serverless
workflows is a service model that will allow developers and
users to simultaneously contribute to function repositories and
for users to compose applications using the expanding set
of functions. While several workflow engines like Apache
Airflow [16] Nextflow [17] can be used to compose and
schedule workflows, they are not designed for serverless
platforms. While both Airflow and Nextflow have extensions
to integrate with container management platforms like Ku-
bernetes, they lack functionality to support to end-to-end life
cycle of serverless applications as a service. For example,
function registration, function selection, output handling are
not supported as first-class features.
Further, managing the data flow between function instances
of workflow has multiple design options—remote storage
guaranteeing persistence and network access at the cost of
higher latency or near/local storage for caching intermediate
data for low latency access, but no guarantees on persistence.
To summarize, existing open-source frameworks lack compre-
hensive support — support only a partial set of primitives
or require embedded logic within functions for workflow
sequencing and explicit data path handling, limiting their re-
usability across workflows.
As part of this work, we aim to overcome the above men-
tioned limitations and build a platform from the ground up to
provide all functionalities of the service life cycle. The main
contributions of our work are:

(i) design and implementation of DAGit, an open source so-
lution integrated with Apache Openwhisk, for serverless
workflow applications.

(ii) a platform to support a rich set of DAG primitives —
linear, parallel, merge, conditional, multi-stage output.
propagation, to support varied set of application require-
ments

(iii) an interface to query DAG metadata and corresponding
individual function results.

(iv) specification to register functions, capabilities to list and
select functions and specification for workflow registra-
tion.

(v) a demonstration of the comprehensive feature set and
capabilities of DAGit.

The subsequent sections of this paper are organized as follows.
Section II presents the Background and Related Work, pro-
viding a comprehensive overview of the relevant background
information and discussing the existing work in the field.
Section III describes the Requirements, outlining the specific
requirements that are addressed by the proposed system.
Following that, Section IV offers a detailed account of the
Design and Implementation Details of DAGit, explaining the
architecture and technical aspects of the system. In Section V,
the Experimental Evaluation of DAGit is presented, including
the methodology and results of the experiments conducted
to assess its performance and effectiveness. Finally, Section
VI concludes the paper by summarizing the key findings and

contributions of the study, and presents potential directions for
future work.

II. BACKGROUND AND RELATED WORK

As the serverless computing paradigm has matured, it has
become evident that building complex applications requires
the coordination of multiple functions in a specific order to
accomplish a particular task, and necessitating a serverless
workflow orchestrator.
Apache Openwhisk Composer [18] is one such orchestrator
tool to compose functions using flow primitives like linear, par-
allel, merge, conditional etc. A major drawback of Composer
is that the conditional “if-else” construct expects the functions
to return either a True or False value to decide conditional
path. As a result, the condition to be applied on the flow has
to be embedded within the function. This tight coupling of
the conditional flow logic within function implementation has
two main drawbacks—the function cannot be easily reused in
other flows and a change in condition necessitates an update of
the function implementation. Further, the Composer does not
support non-binary conditions for workflow coordination and
the equal to condition. An additional limitation with Composer
is that it does not allow for generalized data dependencies
across functions in a flow. All input and output of data is
assumed to be linear from the current function to the next.
Data dependency patterns that truly mimic a DAG (direct-
acyclic graph) are not possible with Composer. In order to
pass data from the first function to say the last function in a
workflow, data has to be propagated through every function in
the sequence of the workflow.
The main limitations of Composer include the tight coupling of
conditional flow logic within function implementation, limited
support for non-binary conditions and equal-to condition, lack
of generalized data dependencies across functions, the inability
to create data dependency patterns resembling a DAG, the
requirement of Redis support for parallel execution, and the
restriction of a 1:1 relationship between triggers and work-
flows. These limitations can make it challenging for end users
to reuse functions, handle changing conditions, and manage
multiple workflow triggers.
AWS Step Functions [19] is an Amazon Web Services
managed service to compose and create workflows. Serverless
workflows with AWS Step functions are par-per-use and are
restricted to the AWS ecosystem. Migrating workflows to
another cloud provider or on-premises environments require
significant effort and are not straightforward. DAGit simplifies
the effort by providing a clear abstraction to users, limiting the
entire execution steps to a single trigger invocation. Moreover,
DAGit is an open-source and cloud-agnostic platform, thus
eliminating the need to have a cloud account.
Apache Airflow [20] is a workflow engine that program-
matically enables the creation, scheduling and monitoring of
workflows. With Airflow, data passing within functions needs
to be explicitly defined in the functions itself, restricting
the generality of their usage. Moreover, maximum size of
intermediate data that can be stored is 48 KB and incapable of

handling requirements of applications with larger intermediate
Another workflow management platform, NextFlow [21], is a
bio-informatics workflow manager that enables the develop-
ment of portable and reproducible workflows. Kubeflow [22]
is a popular open-source platform for managing and deploying
machine learning workflows on Kubernetes. None of the above
mentioned workflow management and orchestration services
(Airflow, Nextflow, Kubeflow) provide features for end-to-
end life cycle of serverless applications as a service. The
features of function registration, generalized function selection
and output handling are not supported as first-class features.
DAGit aims to address these aspects and provide an unified
tools for all aspects and requirements of a serverless workflow
application setup, execution and monitoring.
Sonic [23], is a data management solution for function chains
that optimizes application performance and cost, by transpar-
ently selecting the between different storage for intermediate
storage — remote storage, VM-storage or direct passing, for
each edge of the serverless workflow DAG.
Orion [24] is a solution to minimize to meet probabilistic
guarantees for end-to-end latency of serverless workflows. The
techniques use right-sizing (model based resource allocation
for functions), bundling (co-location of functions) and just in
time pre-warming of VM-based function runtimes.
While Sonic and Orion are not solutions for end-to-end reg-
istering, managing and hosting of serverless workflows, they
solve important problems related to performance guarantees
and resource provisioning, and are complementary to aims of
DAGit. In fact the DAGit prototype can provide performance
guarantees on workflows based on borrowing ideas from Sonic
and Orion.
Towards comparing DAGit with the state-of-the-art
frameworks—Airflow [16], Nextflow [17] and Synapse

[25], note that the following features of DAGit are
not supported by these frameworks—customizable DAG
specifications, Trigger and Function registrations, Function
listings, Multi-stage output propagation, 1:M trigger to
workflow association and Workflow query interface.
Further, Table I shows the comparison of some common
features. DAGit supports multiple function output propagation
with explicit data path specification. It offers a conditional
primitive with a wider range of relational operators, enabling
users to define the comparison key and target directly in the
DAG specification. This promotes re-usability of functions
across workflows. Additionally, DAGit allows for a 1:M
relationship between triggers and workflows, enabling the
triggering of multiple workflows with a single trigger.

III. REQUIREMENTS

The main contributions of DAGit are to enable FaaS-based
service providers and end users to create custom DAG spec-
ifications, add functions and triggers to the resource pool,
and provide telemetry for operations and usage. Towards
meeting these goals, DAGit is built to address the following
requirements—

Feature Airflow
[16]

Nextflow
[17]

Synapse
[25] DAGit

Composability ✓ ✓ ✗ ✓

Conditional
Operations ✓ ✓ ✓ ✓

Open
Source ✓ ✓ ✓ ✓

Cloud
Agnostic ✓ ✗ ✗ ✓

Data
Passing

Optimization
✗ ✗ ✗ ✓

Table I: Feature-wise comparison of DAGit with state-of-the-
art frameworks.

Customizable DAG Specification: Users should have the
ability to define their own DAG specifications using a json
format, allowing them to specify the control and data paths of
their workflows as per their requirements.
Function Integration and Customizable Trigger Specifica-
tion: DAGit should provide a mechanism for users to register
their own functions and triggers, enabling seamless integration
into the workflow ecosystem.
Multi-Output Propagation: Users should be able to propa-
gate data efficiently across multiple paths within a workflow,
allowing for the handling and routing of data from multiple
function outputs.
Conditional Operations: DAGit should support a variety of
relational operators to enable the execution of conditional
operations within workflows, providing flexibility in workflow
design and execution. This includes the ability to specify
conditions directly in the DAG specification itself, allowing
for more decoupled and flexible workflows without relying on
hard-coded logic within individual functions.
One-to-Many Relationship between Triggers and Workflows:
The platform should support triggering multiple workflows
with a single trigger event, facilitating the execution of com-
plex workflows and enabling event-driven architectures.
Workflow Management and Monitoring: DAGit should offer
comprehensive functionality for efficient workflow manage-
ment and monitoring. This includes the ability to list available
functions, query workflows based on their DAG ID, and
individually query function IDs. These features enable users to
easily navigate and monitor their workflows, enhancing overall
workflow management capabilities.
By addressing these requirements, DAGit aims to provide a
comprehensive, unified and user-friendly open-source platform
for managing and executing applications as workflows.

IV. DESIGN AND IMPLEMENTATION

In this section, we first describe the architecture and compo-
nents of DAGit, then the DAGit operations setup followed by
design of the DAG JSON specification and workflow trigger
specification.

Fig. 3: DAGit integration with Openwhisk.

A. DAGit Architecture
Figure 3 illustrates the architecture and components of DAGit.
The implementation of DAGit uses Apache OpenWhisk [6]
for the serverless operations pipeline — trigger processing,
dispatch of messages, invocation of runtimes for requests etc.
The saffron-colored boxes represent OpenWhisk components,
while the blue-colored box represents DAGit, which is inte-
grated with OpenWhisk.
As shown in the figure, every trigger request first hit the
API Gateway [26] which routes the requests to the back-
end service. This also acts as a reverse proxy for the request
and terminating SSL. Before processing the requests, authen-
tication is performed using CouchDB [27], an open-source
JSON data store. DAGit acts as an orchestrator, handling
authenticated trigger requests and performing the orchestration
of functions in the workflow based on the control and data
flow. The orchestrator of DAGit manages and controls all
incoming trigger requests for the DAG, queuing them in the
Kafka [28] queue controlled by OpenWhisk. The individual
requests for execution of functions in the given DAG is queued
up in an internal queue data structure, maintained by DAGit.
The Invoker consumes the trigger requests from the Kafka
queue and initiates container runtimes to execute either the
DAG or an individual function. The response, along with a
unique DAG ID or function ID, is returned to the users and
stores the outputs in an output store.

B. DAGit Operations Setup
DAGit serves as a versatile platform catering to three main cat-
egories of actions: DAG Registration, Function Registration,
Trigger Registration
We now list the requirements that DAGit expects from the
variety of user it supports -

• A JSON DAG specification file: This file is used by
DAG Registrars to define the structure of a Directed
Acyclic Graph (DAG). It specifies the functions involved
in the DAG, as well as their control sequence and data
path. The DAG specification outlines the dependencies
and relationships between the functions, allowing for the
execution of complex workflows.

• Function source code, Dockerfile, and requirements file:
These items are required by Function Registrars for de-
ploying functions. The function source code contains the
implementation logic of a specific function. The Docker-
file is used to build a Docker image that includes all the

dependencies and packages required by the function. The
requirements file lists the specific Python dependencies
needed by the function, allowing for easy installation and
management.

• JSON trigger specification: This specification defines
the trigger settings for executing functions or DAGs. It
includes the trigger name, the type of trigger (either a
function or a DAG), and the specific function or DAG to
execute when the trigger is activated. The JSON trigger
specification supports a 1:M (one-to-many) relationship,
allowing multiple DAGs or functions to be associated
with a single trigger. This enables flexible and versatile
trigger-based execution of different workflows or func-
tions based on specific events or conditions.

By accommodating these different user categories, DAGit
offers a comprehensive and collaborative environment where
DAGs, functions, and triggers can be registered, orchestrated,
and executed seamlessly.

C. DAG JSON Specification
We now list the required fields in a DAG specification file

• name : Name of the DAG
• node id : Name of the function
• node id label: Name to specify purpose of the function
• primitive: Type of primitive the action supports - condi-

tion, parallel, serial.
• condition: Required if primitive type is condition. Speci-

fies the source, operator, and target fields. Otherwise this
field should be left as ””.

• source: Specifies one of the response keys of the current
node id. Used in conditions to compare values. For e.g.
if one of the keys in response json is result, and we want
to provide a condition that if result==even, then specify
source as result and target as even.

• operator: Mathematical operations like equals, greater
than, less than, greater than equals, less than
equals are accepted.

• target: Specify the target value. It can accept both integer
and string.

• next: Specify the name of next node id to be executed.
If primitive is specified as parallel, next will take list of
node ids, else it will accept a single node id in ””
format. If this is the last node id (ending node of the
workflow), the field should be kept as ””.

• branch 1: Specify the node id if primitive is specified
as condition else should be kept as ””. This is the target
branch which will be executed if condition is true.

• branch 2: Specify the node id if primitive is specified
as condition should be kept as ””. This is the alternate
branch which will be executed if condition is false.

• arguments: This field should be kept as blank for each
node id. It will get auto-populated with json payload
when the DAG is instantiated with the trigger.

• outputs from: Specify the list of node id/node ids
(functions) whose output current node id (function)
needs to consume (data path). For the first function in

Listing 1: Example specification for conditional and par-
allel primitives.
{ "name": "odd-even-test",
"dag": [
{

"node_id": "odd-even-check",
"properties":
{

"label": "Odd Even Action",
"primitive": "condition",
"condition":
{

"source":"result",
"operator":"equals",
"target":"even"

},
"next": "",
"branch_1": "even-print-action",
"branch_2": "odd-print-action",
"arguments": {},
"outputs_from":[]

}
},
{

"node_id": "even-print-action",
"properties":
{

"label": "Even Print Action",
"primitive": "parallel",
"condition": {},
"next": ["increment-action","multiply-action

"],
"branch_1": "",
"branch_2": "",
"arguments":{},
"outputs_from":["odd-even-action"]

}
}] }

the workflow DAG, this field should be left blank. This
is because the first function receives its input directly
from the trigger request payload sent by clients.

Listing 1 demonstrates the usage of a JSON-based DAG
representation and to define conditions and specify functions
to execute in parallel using the parallel primitive. The function
odd-even-check does an odd-even check on a given input and
generates a json response containing a key called result. This
key holds the value even or odd based on the computation of
the given input. This response key result is used as a condition
within the DAG, i.e. if result (source) is equal to even (target),
then control will go to the even-print-action (target branch)
else odd-print-action (alternate branch).
The function even-print-action has a one-to-many relationship
with the functions increment-action (which increments a given
input by some factor) and multiply-action (which scales a
given input by a certain factor), both of which are executed
in parallel.
Listing 2 provides an example of registering a DAG to the
DAGit DAG store, which is built on MongoDB [29]. The
provided code snippet performs a server-side operation which
reads an input DAG JSON specification, sends its content as

Listing 2: A DAG registration example.
Code to register a DAG
Usage: python3 dag_register.py dag.json
import requests
import sys
import json
def server():

url = "http://<ip>:<port>/register/dag"
input_json_file = open(sys.argv[1])
params = json.load(input_json_file)
reply = requests.post(url = url,json = params,

verify = False)
print(reply.json())

def main():
server()

if __name__=="__main__":
main()

Listing 3: A function registration example.
import requests
import sys
import json
def server():

url = "http://<ip>:<port>/register/function/
image-bilateral-filter"

files = [
(’pythonfile’, open(sys.argv[1],’rb’)),
(’dockerfile’, open(sys.argv[2],’rb’)),
(’requirements.txt’, open(sys.argv[3],’rb’))
]
reply = requests.post(url = url,files = files,

verify=False)
print(reply.json())

def main():
server()

if __name__=="__main__":
main()

a JSON payload in an HTTP POST request to a the DAGit
API endpoint for DAG registration, and prints the response
received from the server to the DAG registrar.

D. Trigger JSON Specification
We now list the required fields for trigger specification.

• trigger name : Name of the trigger
• type : The trigger type can be either for a DAG or a

function.
• dags : If type is specified as dag, this field expects a list

of dags else this field should be left as ””.
• functions : If type is specified as function, this field

expects a list of functions else this field should be left
as ””.

An example for a trigger specification is mentioned in Listing
5 in Section V.

E. Function Registration
Listing 3 provides a sample code snippet that demonstrates
the registration of a function named image-bilateral-filter
using DAGit. The function registration process involves pro-
viding three essential components: the script containing the
function’s logic, the Dockerfile for building the function’s
image, and a requirements file specifying the dependencies

Fig. 4: Workflow primitives supported by DAGit.

required by the function. By registering the function with
these components, DAGit enables seamless deployment and
management of the image-bilateral-filter function within the
platform.

F. Workflow Primitives

Figure 4 showcases the diverse range of primitives supported
by DAGit, emphasizing its versatility and flexibility in manag-
ing and executing workflows. The serial primitive facilitates
the sequential execution of functions, ensuring dependencies
are met. The parallel primitive enables the concurrent ex-
ecution of multiple functions without any predefined order.
With the merging primitive, outputs from multiple functions
are combined into a single output, streamlining data process-
ing. The conditional primitive introduces conditional logic,
allowing the execution of different branches based on specified
conditions. Lastly, the output from multiple functions prim-
itive empowers workflows to consume outputs from multiple
functions, promoting data integration and collaboration. By
offering this comprehensive set of primitives, DAGit equips
users with a robust framework to design and execute work-
flows tailored to their specific needs.

G. Workflow Operations and Interactions

When a user provides a trigger, it is sent to the trigger
gateway and authenticated by CouchDB. DAGit, acting as an
orchestrator, takes charge of the authenticated trigger request.
For a DAG execution request, DAGit communicates with the
DAG store, searching for the specified DAG based on the
user-provided DAG name. It orchestrates the execution of
functions according to the control and data paths specified in
the JSON of the DAG. If the request is for a single function
execution, DAGit communicates with the function store and
directly executes the function. Intermediate outputs are stored
in in-memory data cache (Refer Figure 5). To manage the
workflow, DAGit’s orchestrator maintains an internal queue.
Prior to function execution, the function is dequeued, and
the subsequent function is queued up for execution. This
orchestration process ensures the proper sequence of function
executions. The orchestrator of DAGit manages and controls
all incoming trigger requests, queuing them in the Kafka queue
controlled by OpenWhisk. The Invoker component consumes
the trigger requests from the queue and initiates container

Fig. 5: Workflow operations and interactions with DAGit
components.

DAG ID Dag Name Function IDs
3e8c7ea5 Toonify [a1111456, c4b14cc0]
0b88dfc3 decode-blur [b720719f, 336dd70c]

Table II: DAG metadata showing the DAG ID, DAG name
and the corresponding function ids of the DAG.

Function ID Function Response
a1111456 json-response-1
336dd70c json-response-2

Table III: Function metadata showing the Function ID and
the corresponding function output in json format.

runtimes to execute either the DAG or the function. The
response, along with a unique DAG ID or function ID, is
returned to the users. Additionally, the application outputs
are stored to a cloud storage service (AWS’s S3 Storage) for
future reference and retrieval. Additionally, users can query
DAG metadata by specifying the DAG ID, to get a list of
function identifiers and associated metadata. Users can then
individually query these function ids to fetch the responses
from these individual functions. Table II and Table III show
the schema of the DAG metadata table and function metadata
table respectively.

H. Efficient Multi-Output Propagation
DAGit uses Redis as a key-value intermediate store to support
the primitive of utilizing outputs from multiple functions as
inputs to another function. After each completion of DAG exe-
cution, the Redis intermediate store is flushed. Redis is used an
in-memory store for intermediate outputs and offers significant
advantages in terms of latency reduction (compared to using
remote storage options like AWS S3 as the intermediate store).
By leveraging Redis, we eliminate the need for redundant data
copies over the network that would have been required with
AWS S3. With AWS S3, data would need to be transmitted
from one function to AWS S3 and then from AWS S3 to
the receiving function, resulting in substantial overhead. The
Redis-based implementation optimizes latency and minimizes
network data transfer overhead, contributing to efficient multi-
output propagation in workflow execution.

V. EXPERIMENTAL EVALUATION

The DAGit prototype for evaluation is composed of a cluster
with a Openwhisk master node and four worker nodes. The

master node is hosted on a machine equipped with an Intel
Xeon E5-2683 v4 processor and 128 GB of RAM with each
worker node allocated 8 CPU cores and 16 GB of RAM, and
the master node allocated 10 CPU cores and 32 GB of RAM.
The DAGit orchestrator executes on the master node and the
function instances on the worker nodes. Further, we enable the
affinity and scheduler configurations of Openwhisk to schedule
tasks across all the worker nodes that belong to the cluster.
For the invoker component, we specified certain options to
customize its behavior. Specifically, (i) set the heap size
available to each worker node to 512 MB. (ii) leveraged the
Kubernetes container factory with a replica count of 4, ben-
efiting from Kubernetes’ container management capabilities
for scalability. (iii) enabled the pod disruption budget (PDB)
[30] feature to limit the number of unavailable pods during
maintenance or failures. This helped maintain the overall
system stability. (iv) configured to handle a maximum of
100,000 action invocations, concurrent invocations, and trigger
fires per minute. Limits were also set for the maximum length
of action sequences to ensure optimal performance under
heavy workload.

A. Serverless Application Life Cycle with DAGit
We now show how DAGit as a platform can be used to register
a DAG, register a trigger associated with the DAG, execute the
application and persistently store output for clients and query
DAG metadata. For this purpose, DAGit is used to deploy
Toonify, a video analytics pipeline.

Fig. 6: Toonify Workflow Serverless Application on DAGit

As show in the Figure 6 the workflow has three functions in
the pipeline — (i) the decode function which uses FFmpeg
[31] to sample videos and generate frames, (ii) an image

filtering function that uses median blurring, edge detection,
noise removal filters and edge sharpening and masking to
generate a cartoon equivalent image, (iii) the encode function
that combines the generate images to create a cartoon video
sequence. The output video is stored as a file in a S3 bucket.
We first registered the DAG named toonify by specifying
the DAG specification as shown in Listing 4 which specifies
three functions - decode-function, image-bilateral-filter and
encode-function. The control flow is defined by specifying
the next function in the workflow to execute in the next field,
while the data path is specified in the outputs-from field.
Following the DAG registration, the trigger is registered using
the provided trigger specification, as illustrated in Listing 5.
The specification defines the trigger name as ToonifyTrigger,
with the type set to dag. The dags field specifies the name of
the associated DAG as toonify. As it is a trigger for a DAG,
the functions field is left blank.
The DAG was invoked using the specified trigger name via
web request, and DAGit orchestrated the data and control

Listing 4: Toonify DAG Specification
{ "name": "toonify",
"dag": [
{

"node_id": "decode-function",
"properties":
{

"label": "Decode Function",
"primitive": "serial",
...

}
},
{ ...
},

{
"node_id": "encode-function",
"properties":
{ ...

"outputs_from": ["image-bilateral-filter"]
}

}] }

Listing 5: Toonify Trigger Specification.
{

"trigger_name": "ToonifyTrigger",
"type":"dag",
"dags": ["toonify"],
"functions":""

}

flow and stored application output persistently in a S3 bucket.
Listing 6 shows the final consolidated DAG output mentioning
the DAG identifier of the Toonify workflow, along with the
activation and output metadata. The DAG metadata can be
used to query the results using the key dag id. Listing 7
shows the result of query using a DAG identifier that lists all
the individual functions of the workflow. Function identifiers
listed as part of this query result can further be used to view
individual outputs of each function in the workflow execution.
To estimate the overhead of the DAGit platform to perform
the various orchestration actions we measured the latency for
each of them. Following are the overheads for the three main
tasks with the Toonify workflow— DAG registration duration
was 31 ms, trigger registration duration was 26 ms and time
to query the metadata store was 25 ms. Note that the DAG
registration and the trigger registration is a single time activity,
while querying is dependent on number of times the user needs
feedback.
Further, the time taken to ferry data between functions (time
from when a function stores data and the time when data is
read by the next function was in the range of 2-3 seconds for
decode function outputing 10 to 25 images.

B. Comparison of DAGit and Composer Orchestrators

DAGit not only offers a comprehensive solution for regis-
tering, executing, and querying DAG workflows and triggers
but also incorporates a logging system that captures essential
execution information in the dagit.log file. The logs include
timestamps for function readiness, execution start, completion,

Listing 6: Toonify Output
"dag_id": "24c3de27-3b06-499d-abc4,
"result": {

"activation_id":"b22b6d4c32fa4cddab6d4c32fa",
"encode_output": "https://dagit-store.s3.ap-south

-1.amazonaws.com/output.avi"
}

Listing 7: Toonify DAG Query Response
{
"dag_metadata":
[

{
"dag_id": "76cc8a53-0a63-47bb-a5b5-9

e6744f67c61",
"dag_name": "toonify",
"function_activation_ids:[
"8d7df93e8f2940b8bdf93e8f2910b80f",
"654248d5be1f4fdb8248d5be1f9fdb75",
"6ab45fb9c9694bb0b45fb9c969bbb015"] }

]
}

and next function scheduling, along with associated function
and DAG IDs. Analyzing these detailed logs enables us to
estimate the dispatch latency overhead imposed by DAGit
and the Openwhisk Composer for orchestration of workflows.
Dispatch latency is defined as the time taken by the orches-
trator to decide the next function(s) to execute plus the time
taken to start the function(s).
In order to compare the dispatch latency and performance of
execution, we used the Toonify workflow. Trigger requests to
workflows instantiated via DAGit and Compose had identical
inputs. The experiment was conducted for 100 iterations,
where the input request payload included a video URL and
the number of frames to extract from the video. The parameter
for the number of frames to be generated as output was varied
across iterations.
Table IV and Table V show the execution time of the serverless
functions, the end to end latency (the response time of each
workflow) and the dispatch latency (overhead of orchestrating
the workflows) using DAGit and Openwhisk Composer. These
statistics are reported for output requirements changing from
10 to 25 outputs frames. As can be observed from the results,
the function execution times are similar between the two
orchestration platforms. However, there is a notable difference
in the dispatch latency, with DAGit demonstrating much lower
latency (5-6 ms) compared to Openwhisk Composer (139-
371 ms). This dispatch latency difference is because DAGit
reads the DAG specification at the start of execution of a
workflow, and while a function executes the next function is
already queued for dispatch. DAGit has the next function to
be executed at the head of the queue and can be fetched in
O(1) time. Composer, on the other hand, spins up a separate
Docker container to schedule the next function which has its
own spin up (startup) time for every switch between functions.
Table VI shows the various stages of a single instance of

Frames Response Time Execution Time Dispatch Latency
10 13.615 s 13.610 s 5 ms
15 17.370 s 17.364 s 6 ms
20 26.335 s 26.330 s 5 ms
25 35.786 s 35.781 s 5 ms

Table IV: Duration of workflow completion, function ex-
ecution, and dispatch latency with DAGit and the Toonify
workflow.

Frames Response Time Execution Time Dispatch Latency
10 12.044 s 11.673 s 371 ms
15 18.710 s 18.568 s 142 ms
20 25.007 s 24.772 s 235 ms
25 36.449 s 36.310 s 139 ms

Table V: Durations of workflow completion, function execu-
tion, and dispatch latency with Openwhisk Composer and the
Toonify workflow.

Activation ID Duration Execution Entity
c9b25f01ae1942 5.32 s decode-function
c6a9bf400a314e 3 ms DAGit orchestrator
24286a51cc634d 4.41 s image-bilateral-filter
e73772ddcbb744 2 ms DAGit orchestrator
b8a5db9e63304f 3.88 s encode-function

Table VI: Toonify Workflow Log displaying the various events
as part of its execution with DAGit

the workflow execution. The function decode-function starts
execution at the same time as it is dequeued. It takes just
3 ms between the completion time of decode-function and
dequeing time of the next function image-bilateral-filter.
Similarly, it takes just 2 ms for the overall control switch delay
between image-bilateral-filter function and the next function
encode-function. Additionally, there is no additional startup
or stopping overhead for the DAGit orchestrator. The only
overhead incurred is, thus, the dispatch latency while switching
between functions in the workflow.
The total time taken to complete the workflow with DAGit is
13.62 seconds.
Table VII shows the events of execution of a single instance
of Toonify workflow execution invoked via the Openwhisk
Composer with identical inputs as was used in our DAGit
platform. The table shows that in addition to the functions
in the workflow, there is an additional overhead incurred by
the container toonify spun by Composer which is responsible
for orchestration functions in the workflow. The following
latencies between events are observed— 340 ms (cold start) at
startup, 12 ms and 8 ms delay (warm start) in between func-
tions decode-function and image-bilateral-filter and image-
bilateral-filter and encode function respectively and 11 ms for
wrapping up the workflow. The startup latency is recorded to
be in between 12-18 ms for warm container startup and 6-
11 ms for stopping the container. The overhead for switching
functions are from 7-14 ms. The total time taken to complete
the workflow is around 18.48 seconds.
Based on this comparison we show that DAGit as (or more)
efficient that Openwhisk Composer and as the length of
the workflows increases we expect DAGit to yield better
performance than Apache Composer.

Activation ID Duration Execution Entity
2a604a28550741 340 ms Composer
6971c4fe88db45 6.77 s decode-function
c6a9bf400a314e 12 ms Composer
24286a51cc634d 6.37 s image-bilateral-filter
e73772ddcbb744 8 ms Composer
b8a5db9e63304f 4.97 s encode-function
87d58732b2ab4a 11 ms Composer

Table VII: Toonify Workflow Log displaying the various
events as part of its execution with Openwhisk Composer

Fig. 7: Online Compiling Serverless Application on DAGit

Start Response
Time

Execution
Time

Dispatch
Latency

DAGit
Latency

%
Cold 77 s 76.98 s 20 ms 0.03
Warm 13 s 12.982 s 18 ms 0.14

Table VIII: Total latency and latency components with DAGit
for the Online Compiling workflow.

C. Case studies to showcase DAGit primitives
(i) Replicating a real-world serverless application
We deployed and evaluated a real-world serverless
application—Online Compiling which is part of the
ServerlessBench [32] suite of applications Figure 7) shows
the application and the workflow contains a total of thirteen
functions with a combination of sequential, parallel, and
merge primitives.
The DAG specification snippet for this application is as shown
in Listing 8. The cli-function is the start function followed by
3 parallel functions mentioned in the next field with primitive
as parallel followed by other functions of the chain.
Table VIII provides the execution time of the serverless
functions, the end to end latency (the response time of each
workflow) and the dispatch latency of the Online Compiling
workflow, averaged over 10 iterations. DAGit completely elim-
inates the startup latency as incurred in the approach followed
by Openwhisk Composer and the only overhead is that of the
dispatch latency which incurs a very negligible percentage of
the response time (0.03 % and 0.14 % for cold starts and warm
starts respectively).
(ii) Support for Multi-Stage Output Propagation
Next we demonstrate DAGit’s feature to support workflows
which contain multi-stage output propagation, i.e. outputs from
multiple functions as an input to a function in the workflow.
Note that Apache Composer does not support this feature.
We demonstrate this primitive by deploying a Text Sentiment
Analysis [33] workflow, consisting of three functions—fetch-
sentences, calculate-sentiment and create-sentiment-report
as shown in Figure 8. The function calculate-sentiment takes
input from the output of fetch-sentences and the function
create-sentiment-report takes input from the outputs of both
fetch-sentences and calculate-sentiment. Input to the function

Listing 8: Online Compiling DAG Specification
{
"name": "online_compiling",
"dag": [
{

"node_id": "cli-function",
"properties":
{

"label": "CLI Function",
"primitive": "parallel",
"condition":{},
"next": ["strip-function","nm-function","

ranlib-function"],
...
"outputs_from":[]

}
},
{
"node_id": "strip-function",
"properties":
{

"label": "Strip unceesaary lines Action",
"primitive": "serial",
"next": "generate-dep",
"outputs_from": ["cli-function"]

}
},
{...}
{

"node_id": "ar",
"properties":
{

"primitive": "serial",
"condition":{},
"next": "",
"outputs_from": ["ld"]
}

}] }

Fig. 8: The Text Sentiment Analysis application as a workflow.

fetch-sentences is via the trigger, and is an URL that points to
input text article. For text located at a given URL the function
extracts the summary, and returns the individual sentences of
the summary as a list. The next function calculate-sentiment
takes the list of sentences from fetch-sentences, analyzes the
sentiment of each sentence using TextBlob [34]. a library
for processing textual data and returns a dictionary with a
list of sentiment scores for each sentence. The next function
create-sentiment-report takes input from outputs of both fetch-
sentences and calculate-sentiment, i.e., takes lists of sentences
and their corresponding sentiment scores, processes them to
create a tabular report, and returns the report as a formatted
string. The DAG specification for the text-sentiment-analysis
application as shown in Listing 9. The outputs-from field of
the specification lists two functions that the create-sentiment-
report report depends on.
The final result of the application is a report which presents the
sentences and their associated sentiment scores in a structured

Listing 9: Text Sentiment Analysis DAG Specification.
{ "name": "text-sentiment-analysis",

"dag": [
{

"node_id": "fetch-sentences",
"properties":
{

"label": "Fetch Sentences",
"primitive": "serial",
"condition":{},
"next": "calculate-sentiment",
....

}},{
...},

{
"node_id": "create-sentiment-report",
"properties":
{ ...

"outputs_from": ["fetch-sentences","calculate-
sentiment"]

}}] }

Sentence Sentiment score
Although mathematics is extensively used for
modeling phenomena, the fundamental truths
of mathematics are independent from any sci-
entific experimentation

0.00

Rigorous reasoning is not specific to mathe-
matics, but, in mathematics, the standard of
rigor is much higher than elsewhere

0.08

Mathematical theories and concepts often re-
main purely theoretical, with limited practical
applications and little impact on real-world
phenomena

- 0.23

Table IX: Sentiment polarity report showing sentiment corre-
sponding to each sentence (-1 to 1).

manner allowing for easy analysis and interpretation. This
sentiment polarity report provides a measure of sentiment for
each sentence, ranging from -1 to 1. Positive sentiment is
indicated by values greater than 0, while 0 signifies neutral
sentiment, and values less than 0 represent negative sentiment.
Table IX shows the output for three sentences from a sample
input text.

VI. CONCLUSIONS

In this work, we designed and developed, DAGit, a platform
for supporting the end-to-end life cycle of deploying serverless
workflow applications. DAGit uses JSON-based specifications
for registration of functions, workflows and triggers, and ac-
companied with a orchestrator supports a rich set of workflow
primitives. We demonstrated the features and functionalities of
DAGit via an experimental study with different workflows. We
also showed that the overheads of DAGit or less than that of
Apache Composer, while supporting a larger set of workflow
primitives. DAGit will be released as a open source project
and will be available for further extensions and usage.
As part of future work, we intend to extend diversity of the
serverless functions store and also encode varied workflow
application examples. We also plan to extend the list of
supported primitives to include barrier-style synchronization,
loops. Further, support for GPU-based functions, telemetry
extensions, and failure handling are in the pipeline.

REFERENCES

[1] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” EECS Department, University of California,
Berkeley, Tech. Rep., Feb 2019.

[2] “Aws lambda,” https://aws.amazon.com/lambda/, retrieved July 5, 2023.
[3] “Ibm cloud functions,” https://cloud.ibm.com/functions/, retrieved July

5, 2023.
[4] “Azure durable functions,” https://learn.microsoft.com/en-us/

azure/azure-functions/durable/durable-functions-overview?tabs=
csharp-inproc, retrieved July 5, 2023.

[5] “Google cloud functions,” https://cloud.google.com/functions, accessed
April 24, 2023.

[6] “Apache openwhisk,” https://openwhisk.apache.org/, retrieved July 1,
2023.

[7] “Knative,” https://knative.dev/docs/functions/deploying-functions/, ac-
cessed April 23, 2023.

[8] “Openlambda,” https://www.crunchbase.com/organization/openlambda,
accessed April 23, 2023.

[9] L. Ao et al., “Sprocket: A serverless video processing framework,” in
Proceedings of the ACM Symposium on Cloud Computing, SoCC 2018.

[10] A. Mahgoub et al., “Wisefuse: Workload characterization and dag
transformation for serverless workflows,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, June 2022.

[11] F. Romero et al., “Llama: A heterogeneous & serverless framework
for auto-tuning video analytics pipelines,” in Proceedings of the ACM
Symposium on Cloud Computing, 2021.

[12] Z. Li et al., “Faasflow: Enable efficient workflow execution for function-
as-a-service,” ser. ASPLOS 2022.

[13] H. Shen et al., “Nexus: A gpu cluster engine for accelerating dnn-
based video analysis,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, ser. SOSP ’19, 2019, p. 322–337.

[14] H. Zhang et al., “Live video analytics at scale with approximation and
delay-tolerance,” in Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’17, 2017, p.
377–392.

[15] D. Katz et al., “Montage: A grid portal and software toolkit for
science-grade astronomical image mosaicking,” International Journal of
Computational Science and Engineering, 05 2010.

[16] “Apache airflow,” https://airflow.apache.org/, accessed May 4, 2023.
[17] “Nextflow,” https://www.nextflow.io/, accessed May 4, 2023.
[18] “Openwhisk compose,” https://github.com/apache/

openwhisk-composer/, retrieved April 20, 2023.
[19] “Aws step functions,” https://aws.amazon.com/step-functions/, retrieved

July 5, 2023.
[20] “Apache airflow,” https://github.com/apache/airflow, accessed May 4,

2023.
[21] “Nextflow git,” https://github.com/nextflow-io/nextflow, accessed May

3, 2023.
[22] “Kubeflow,” https://www.kubeflow.org/, retrieved July 5, 2023.
[23] A. Mahgoub et al., “Sonic: Application-aware data passing for chained

serverless applications,” in USENIX Annual Technical Conference, 2021.
[24] M. Ashraf et al., “Orion and the three rights: Sizing, bundling, and pre-

warming for serverless dags,” in 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2022), Jul.

[25] “Synapse,” https://github.com/serverlessworkflow/synapse/, retrieved
September 29, 2023.

[26] “Nginx api gateway,” https://www.nginx.com/resources/glossary/
api-gateway/, retrieved July 16, 2023.

[27] “Apache couchdb,” https://couchdb.apache.org/, retrieved July 16, 2023.
[28] “Apache kafka,” https://kafka.apache.org/, retrieved July 16, 2023.
[29] “Mongodb,” hhttps://www.mongodb.com/, retrieved July 15, 2023.
[30] “Pod disruption,” https://kubernetes.io/docs/concepts/workloads/pods/

disruptions/, retrieved July 16, 2023.
[31] “Ffmpeg,” https://github.com/FFmpeg/FFmpeg, accessed April 27, 2023.
[32] “Serverlessbench,” https://github.com/SJTU-IPADS/ServerlessBench/,

retrieved September 30, 2023.
[33] “Text sentiment analysis,” https://aws.amazon.com/what-is/

sentiment-analysis/, retrieved July 16, 2023.
[34] “Textblob: Simplified text processing,” https://textblob.readthedocs.io/

en/dev/, retrieved July 16, 2023.

https://aws.amazon.com/lambda/
https://cloud.ibm.com/functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp-inproc
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp-inproc
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp-inproc
 https://cloud.google.com/functions
https://openwhisk.apache.org/
https://knative.dev/docs/functions/deploying-functions/
https://www.crunchbase.com/organization/openlambda
 https://airflow.apache.org/
https://www.nextflow.io/
 https://github.com/apache/openwhisk-composer/
 https://github.com/apache/openwhisk-composer/
https://aws.amazon.com/step-functions/
 https://github.com/apache/airflow
https://github.com/nextflow-io/nextflow
https://www.kubeflow.org/
https://github.com/serverlessworkflow/synapse/
https://www.nginx.com/resources/glossary/api-gateway/
https://www.nginx.com/resources/glossary/api-gateway/
https://couchdb.apache.org/
https://kafka.apache.org/
hhttps://www.mongodb.com/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://github.com/FFmpeg/FFmpeg
https://github.com/SJTU-IPADS/ServerlessBench/
https://aws.amazon.com/what-is/sentiment-analysis/
https://aws.amazon.com/what-is/sentiment-analysis/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/

	Introduction
	Background and Related Work
	Requirements
	Design and Implementation
	DAGit Architecture
	DAGit Operations Setup
	DAG JSON Specification
	Trigger JSON Specification
	Function Registration
	Workflow Primitives
	Workflow Operations and Interactions
	Efficient Multi-Output Propagation

	Experimental evaluation
	Serverless Application Life Cycle with DAGit
	Comparison of DAGit and Composer Orchestrators
	Case studies to showcase DAGit primitives

	Conclusions
	References

