#!/usr/bin/env python3 import sys import requests import uuid import re import subprocess import threading import queue import redis from flask import current_app import pickle import json import os import time from requests.packages.urllib3.exceptions import InsecureRequestWarning from flask import Flask, request,jsonify,send_file requests.packages.urllib3.disable_warnings(InsecureRequestWarning) import pymongo # app = Flask(__name__) action_url_mappings = {} #Store action->url mappings action_properties_mapping = {} #Stores the action name and its corresponding properties responses = [] queue = [] list_of_func_ids = [] dag_responses = [] function_responses = [] x = 10 def preprocess(filename): with open(filename) as f: lines = f.readlines() action_url_list = [] for line in lines: line = line.replace("\n", "") line = line.replace("/guest/","") action_url_list.append(line) for item in action_url_list: action_name = item.split(' ')[0] url = item.split(' ')[1] action_url_mappings[action_name] = url def execute_thread(action,redis,url,json): reply = requests.post(url = url,json=json,verify=False) list_of_func_ids.append(reply.json()["activation_id"]) redis.set(action+"-output",pickle.dumps(reply.json())) responses.append(reply.json()) def handle_parallel(queue,redis,action_properties_mapping,parallel_action_list): thread_list = [] output_list = [] # List to store the output of actions whose outputs are required by downstream operations for action in parallel_action_list: action_names = action_properties_mapping[action]["outputs_from"] next_action = action_properties_mapping[action]["next"] if(next_action!=""): if next_action not in queue: queue.append(next_action) if(len(action_names)==1): # if only output of one action is required key = action_names[0]+"-output" output = pickle.loads(redis.get(key)) action_properties_mapping[action]["arguments"] = output else: for item in action_names: key = item+"-output" output = pickle.loads(redis.get(key)) output_list.append(output) action_properties_mapping[action]["arguments"] = output_list url = action_url_mappings[action] thread_list.append(threading.Thread(target=execute_thread, args=[action,redis,url,action_properties_mapping[action]["arguments"]])) for thread in thread_list: thread.start() for thread in thread_list: thread.join() action_properties_mapping[next_action]["arguments"] = responses return responses def create_redis_instance(): r = redis.Redis(host="10.129.28.219", port=6379, db=2) return r def get_dag_json(dag_name): myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017") mydb = myclient["dag_store"] mycol = mydb["dags"] query = {"name":dag_name} projection = {"_id": 0, "name": 1,"dag":1} document = mycol.find(query, projection) data = list(document) return data def submit_dag_metadata(dag_metadata): myclient = pymongo.MongoClient("mongodb://127.0.0.1/27017") mydb = myclient["dag_store"] mycol = mydb["dag_metadata"] try: cursor = mycol.insert_one(dag_metadata) # print("OBJECT ID GENERATED",cursor.inserted_id) data = {"message":"success"} return json.dumps(data) except Exception as err: data = {"message":"failed","reason":err} return json.dumps(data) def execute_action(action_name,request): script_file = './actions.sh' subprocess.call(['bash', script_file]) preprocess("action_url.txt") url = action_url_mappings[action_name] reply = requests.post(url = url,json = request,verify=False) function_responses.append(reply.json()) def execute_dag(dag_name,request): # print("------------------------------------DAG START-----------------------------------------------") unique_id = uuid.uuid4() print("DAG UNIQUE ID----------",unique_id) dag_metadata={} dag_metadata["dag_id"] = str(unique_id) dag_metadata["dag_name"] = dag_name list_of_func_ids = [] ######### Updates the list of action->url mapping ################### script_file = './actions.sh' subprocess.call(['bash', script_file]) ##################################################################### preprocess("action_url.txt") ### Create in-memory redis storage ### redis_instace = create_redis_instance() ####################################### action_properties_mapping = {} #Stores the action name and its corresponding properties dag_res = json.loads(json.dumps(get_dag_json(dag_name))) dag_data = dag_res[0]["dag"] for dag_item in dag_data: action_properties_mapping[dag_item["node_id"]] = dag_item["properties"] flag = 0 for dag_item in dag_data: if(flag==0): # To indicate the first action in the DAG queue.append(dag_item["node_id"]) action_properties_mapping[dag_item["node_id"]]["arguments"] = request while(len(queue)!=0): flag=flag+1 action = queue.pop(0) print("ACTION DEQUEUED FROM QUEUE : --->",action) ########################################################## # HANDLE THE ACTION # ########################################################## if isinstance(action, str): # if(isinstance(action_properties_mapping[action]['arguments'],list)): # pass json_data = action_properties_mapping[action]["arguments"] url = action_url_mappings[action] reply = requests.post(url = url,json=json_data,verify=False) list_of_func_ids.append(reply.json()["activation_id"]) # print("Line 292------------",reply.json()["activation_id"]) redis_instace.set(action+"-output",pickle.dumps(reply.json())) action_type = action_properties_mapping[action]["primitive"] if(action_type=="condition"): branching_action = action_properties_mapping[action]["branch_1"] alternate_action = action_properties_mapping[action]["branch_2"] result=reply.json()["result"] condition_op = action_properties_mapping[action]["condition"]["operator"] if(condition_op=="equals"): if(isinstance(action_properties_mapping[action]["condition"]["target"], str)): target = action_properties_mapping[action]["condition"]["target"] else: target=int(action_properties_mapping[action]["condition"]["target"]) if(result==target): output_list = [] # List to store the output of actions whose outputs are required by downstream operations queue.append(branching_action) action_names = action_properties_mapping[branching_action]["outputs_from"] # Get the list of actions whose output will be used if(len(action_names)==1): # if only output of one action is required key = action_names[0]+"-output" output = pickle.loads(redis_instace.get(key)) action_properties_mapping[branching_action]["arguments"] = output else: for item in action_names: key = item+"-output" output = pickle.loads(redis_instace.get(key)) output_list.append(output) action_properties_mapping[branching_action]["arguments"] = output_list else: output_list = [] # List to store the output of actions whose outputs are required by downstream operations queue.append(alternate_action) action_names = action_properties_mapping[alternate_action]["outputs_from"] # Get the list of actions whose output will be used if(len(action_names)==1): # if only output of one action is required key = action_names[0]+"-output" output = pickle.loads(redis_instace.get(key)) action_properties_mapping[alternate_action]["arguments"] = output else: for item in action_names: key = item+"-output" output = pickle.loads(redis_instace.get(key)) output_list.append(output) action_properties_mapping[alternate_action]["arguments"] = output_list if(condition_op=="greater_than"): pass if(condition_op=="greater_than_equals"): pass if(condition_op=="less_than"): pass if(condition_op=="less_than_equals"): pass elif(action_type=="serial"): next_action = action_properties_mapping[action]["next"] if(next_action!=""): output_list = [] # List to store the output of actions whose outputs are required by downstream operations queue.append(next_action) action_names = action_properties_mapping[next_action]["outputs_from"] # Get the list of actions whose output will be used if(len(action_names)==1): # if only output of one action is required key = action_names[0]+"-output" output = pickle.loads(redis_instace.get(key)) action_properties_mapping[next_action]["arguments"] = output else: for item in action_names: key = item+"-output" output = pickle.loads(redis_instace.get(key)) output_list.append(output) action_properties_mapping[next_action]["arguments"] = output_list elif(action_type=="parallel"): parallel_action_list = action_properties_mapping[action]["next"] queue.append(parallel_action_list) else: reply = handle_parallel(queue,redis_instace,action_properties_mapping,action) dag_metadata["function_activation_ids"] = list_of_func_ids submit_dag_metadata(dag_metadata) print("DAG ID---->FUNC IDS",dag_metadata) print('\n') redis_instace.flushdb() print("Cleaned up in-memory intermediate outputs successfully\n") if(isinstance(reply,list)): res = {"dag_id": dag_metadata["dag_id"], "result": reply } else: res = { "dag_id": dag_metadata["dag_id"], "result": reply.json() } dag_responses.append(res)