#ifndef SFRT_MODULE_H #define SFRT_MODULE_H #include #include "types.h" struct module { char name[MOD_NAME_MAX]; char path[MOD_PATH_MAX]; void * dl_handle; mod_main_fn_t entry_fn; mod_glb_fn_t glb_init_fn; mod_mem_fn_t mem_init_fn; mod_tbl_fn_t tbl_init_fn; mod_libc_fn_t libc_init_fn; struct indirect_table_entry indirect_table[INDIRECT_TABLE_SIZE]; i32 argument_count; u32 stack_size; // a specification? u64 max_memory; // perhaps a specification of the module. (max 4GB) u32 timeout; // again part of the module specification. u32 reference_count; // ref count how many instances exist here. struct sockaddr_in srvaddr; int srvsock, srvport; // unfortunately, using UV for accepting connections is not great! // on_connection, to create a new accepted connection, will have to // init a tcp handle, which requires a uvloop. cannot use main as // rest of the connection is handled in sandboxing threads, with per-core(per-thread) tls data-structures. // so, using direct epoll for accepting connections. // uv_handle_t srvuv; // req/resp from http, (resp size including headers!).. unsigned long max_request_size; unsigned long max_response_size; // Equals the largest of either max_request_size or max_response_size unsigned long max_request_or_response_size; int request_header_count; int response_header_count; char request_headers[HTTP_HEADERS_MAX][HTTP_HEADER_MAXSZ]; char request_content_type[HTTP_HEADERVAL_MAXSZ]; char response_content_type[HTTP_HEADERVAL_MAXSZ]; char response_headers[HTTP_HEADERS_MAX][HTTP_HEADER_MAXSZ]; }; struct module *module_alloc(char *mod_name, char *mod_path, i32 argument_count, u32 stack_sz, u32 max_heap, u32 timeout, int port, int req_sz, int resp_sz); // frees only if reference_count == 0 void module_free(struct module *module); struct module *module_find_by_name(char *name); struct module *module_find_by_sock(int sock); static inline void module_http_info( struct module *module, int request_count, char *request_headers, char request_content_type[], int response_count, char *response_headers, char response_content_type[]) { assert(module); module->request_header_count = request_count; memcpy(module->request_headers, request_headers, HTTP_HEADER_MAXSZ * HTTP_HEADERS_MAX); strcpy(module->request_content_type, request_content_type); module->response_header_count = response_count; memcpy(module->response_headers, response_headers, HTTP_HEADER_MAXSZ * HTTP_HEADERS_MAX); strcpy(module->response_content_type, response_content_type); } static inline int module_is_valid(struct module *module) { if (module && module->dl_handle && module->entry_fn) return 1; return 0; } static inline void module_globals_init(struct module *module) { // called in a sandbox. module->glb_init_fn(); } static inline void module_table_init(struct module *module) { // called at module creation time (once only per module). module->tbl_init_fn(); } static inline void module_libc_init(struct module *module, i32 env, i32 args) { // called in a sandbox. module->libc_init_fn(env, args); } static inline void module_memory_init(struct module *module) { // called in a sandbox. module->mem_init_fn(); } static inline i32 module_entry(struct module *module, i32 argc, i32 argv) { return module->entry_fn(argc, argv); } // instantiate this module. static inline void module_acquire(struct module *module) { // FIXME: atomic. module->reference_count++; } static inline void module_release(struct module *module) { // FIXME: atomic. module->reference_count--; } static inline i32 module_argument_count(struct module *module) { return module->argument_count; } #endif /* SFRT_MODULE_H */