feat: percentiles for execution estimates

main
Sean McBride 4 years ago
parent c9bcf086fa
commit d1d27a9162

@ -13,51 +13,80 @@
#error "PERF_WINDOW_BUFFER_SIZE must be power of 2!"
#endif
/*
* The sorted array sorts the last N executions by execution time
* The buffer array acts as a circular buffer of indices into the sorted array
*
* This provides a sorted circular buffer
*/
struct execution_node {
uint64_t execution_time;
uint16_t buffer_idx; /* Reverse Index back to the sorted bin equal to this index */
};
struct perf_window {
uint64_t buffer[PERF_WINDOW_BUFFER_SIZE];
uint64_t count;
lock_t lock;
double mean;
struct execution_node sorted[PERF_WINDOW_BUFFER_SIZE];
uint16_t buffer[PERF_WINDOW_BUFFER_SIZE];
uint64_t count;
lock_t lock;
};
/**
* Iterates through the values in the buffer and updates the mean
* Not intended to be called directly!
* Initializes perf window
* @param self
*/
static inline void
perf_window_update_mean(struct perf_window *self)
perf_window_initialize(struct perf_window *self)
{
assert(self != NULL);
assert(LOCK_IS_LOCKED(&self->lock));
uint64_t limit = self->count;
if (limit > PERF_WINDOW_BUFFER_SIZE) { limit = PERF_WINDOW_BUFFER_SIZE; }
uint64_t sum = 0;
for (uint64_t i = 0; i < limit; i++) sum += self->buffer[i];
LOCK_INIT(&self->lock);
self->count = 0;
memset(&self->sorted, 0, sizeof(struct execution_node) * PERF_WINDOW_BUFFER_SIZE);
memset(&self->buffer, 0, sizeof(uint16_t) * PERF_WINDOW_BUFFER_SIZE);
}
self->mean = (double)(sum) / limit;
};
/**
* Iterates through the values in the buffer and updates the mean
* Not intended to be called directly!
* Swaps two execution nodes in the sorted array, including updating the indices in the circular buffer
* @param self
* @param first_sorted_idx
* @param second_sorted_idx
*/
static inline void
perf_window_initialize(struct perf_window *self)
perf_window_swap(struct perf_window *self, uint16_t first_sorted_idx, uint16_t second_sorted_idx)
{
assert(LOCK_IS_LOCKED(&self->lock));
assert(self != NULL);
assert(first_sorted_idx >= 0 && first_sorted_idx < PERF_WINDOW_BUFFER_SIZE);
assert(second_sorted_idx >= 0 && second_sorted_idx < PERF_WINDOW_BUFFER_SIZE);
LOCK_INIT(&self->lock);
self->count = 0;
self->mean = 0;
memset(&self->buffer, 0, sizeof(uint64_t) * PERF_WINDOW_BUFFER_SIZE);
uint16_t first_buffer_idx = self->sorted[first_sorted_idx].buffer_idx;
uint16_t second_buffer_idx = self->sorted[second_sorted_idx].buffer_idx;
/* The execution node's buffer_idx points to a buffer cell equal to its own sorted index */
assert(self->buffer[first_buffer_idx] == first_sorted_idx);
assert(self->buffer[second_buffer_idx] == second_sorted_idx);
uint64_t first_execution_time = self->sorted[first_sorted_idx].execution_time;
uint64_t second_execution_time = self->sorted[second_sorted_idx].execution_time;
/* Swap Indices in Buffer*/
self->buffer[first_buffer_idx] = second_sorted_idx;
self->buffer[second_buffer_idx] = first_sorted_idx;
/* Swap buffer_idx */
struct execution_node tmp_node = self->sorted[first_sorted_idx];
self->sorted[first_sorted_idx] = self->sorted[second_sorted_idx];
self->sorted[second_sorted_idx] = tmp_node;
/* The circular buffer indices should always point to the same execution times across all swaps */
assert(self->sorted[self->buffer[first_buffer_idx]].execution_time == first_execution_time);
assert(self->sorted[self->buffer[second_buffer_idx]].execution_time == second_execution_time);
}
/**
* Iterates through the values in the buffer and updates the mean
* Adds a new value to the perf window
* Not intended to be called directly!
* @param self
* @param value
@ -71,23 +100,65 @@ perf_window_add(struct perf_window *self, uint64_t value)
assert(value > 0);
LOCK_LOCK(&self->lock);
self->buffer[self->count++ % PERF_WINDOW_BUFFER_SIZE] = value;
perf_window_update_mean(self);
/* If count is 0, then fill entire array with initial execution times */
if (self->count == 0) {
for (int i = 0; i < PERF_WINDOW_BUFFER_SIZE; i++) {
self->buffer[i] = i;
self->sorted[i] = (struct execution_node){ .execution_time = value, .buffer_idx = i };
}
self->count = PERF_WINDOW_BUFFER_SIZE;
goto done;
}
/* Otherwise, replace the oldest value, and then sort */
uint16_t idx_of_oldest = self->buffer[self->count % PERF_WINDOW_BUFFER_SIZE];
bool check_up = value > self->sorted[idx_of_oldest].execution_time;
self->sorted[idx_of_oldest].execution_time = value;
if (check_up) {
for (uint16_t i = idx_of_oldest; i + 1 < PERF_WINDOW_BUFFER_SIZE
&& self->sorted[i + 1].execution_time < self->sorted[i].execution_time;
i++) {
perf_window_swap(self, i, i + 1);
}
} else {
for (uint16_t i = idx_of_oldest;
i - 1 >= 0 && self->sorted[i - 1].execution_time > self->sorted[i].execution_time; i--) {
perf_window_swap(self, i, i - 1);
}
}
/* The idx that we replaces should still point to the same value */
assert(self->sorted[self->buffer[self->count % PERF_WINDOW_BUFFER_SIZE]].execution_time == value);
/* The sorted array should be ordered by execution time */
for (int i = 1; i < PERF_WINDOW_BUFFER_SIZE; i++) {
assert(self->sorted[i - 1].execution_time <= self->sorted[i].execution_time);
}
self->count++;
done:
LOCK_UNLOCK(&self->lock);
}
/**
* Returns mean perf value across all executions
* @returns mean or -1 if buffer is empty
* Returns pXX execution time
* @param self
* @param percentile represented by double between 0 and 1
* @returns execution time or -1 if buffer is empty
*/
static inline double
perf_window_get_mean(struct perf_window *self)
static inline uint64_t
perf_window_get_percentile(struct perf_window *self, double percentile)
{
assert(self != NULL);
assert(percentile > 0 && percentile < 1);
if (self->count == 0) return -1;
return self->mean;
return self->sorted[(int)(PERF_WINDOW_BUFFER_SIZE * percentile)].execution_time;
}
/**

@ -98,17 +98,10 @@ listener_thread_main(void *dummy)
/* Perform Admission Control */
/*
* TODO: Enhance to use configurable percentiles rather than just mean. This can be policy
* defined in the module specification
*/
uint64_t estimated_execution = perf_window_get_mean(&module->perf_window);
uint64_t estimated_execution = perf_window_get_percentile(&module->perf_window, 0.5);
/*
* If this is the first execution, assume a default execution
* TODO: Enhance module specification to provide "seed" value of estimated duration
* TODO: Should we "rate limit" or only admit one request before we have actual data? Otherwise
* we might be flooded with sandboxes that possibly underestimate
*/
if (estimated_execution == -1) estimated_execution = 1000;
@ -131,8 +124,7 @@ listener_thread_main(void *dummy)
/* Add to work accepted by the runtime */
runtime_admitted += admissions_estimate;
debuglog("Runtime Utilization: %f%%\n",
runtime_admitted / runtime_worker_threads_count * 100);
debuglog("Runtime Admitted: %f / %u\n", runtime_admitted, runtime_worker_threads_count);
}
}
}

@ -785,9 +785,8 @@ sandbox_set_as_complete(struct sandbox *sandbox, sandbox_state_t last_state)
perf_window_add(&sandbox->module->perf_window, sandbox->running_duration);
runtime_admitted -= sandbox->admissions_estimate;
assert(runtime_admitted >= 0);
debuglog("Runtime Utilization: %f%%\n", runtime_admitted / runtime_worker_threads_count * 100);
debuglog("Runtime Admitted: %f / %u\n", runtime_admitted, runtime_worker_threads_count);
sandbox_print_perf(sandbox);

Loading…
Cancel
Save