You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1155 lines
36 KiB
1155 lines
36 KiB
// Copyright 2020 Joshua J Baker. All rights reserved.
|
|
// Use of this source code is governed by an MIT-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include "hashmap.h"
|
|
|
|
#define GROW_AT 0.60 /* 60% */
|
|
#define SHRINK_AT 0.10 /* 10% */
|
|
|
|
#ifndef HASHMAP_LOAD_FACTOR
|
|
#define HASHMAP_LOAD_FACTOR GROW_AT
|
|
#endif
|
|
|
|
static void *(*__malloc)(size_t) = NULL;
|
|
static void *(*__realloc)(void *, size_t) = NULL;
|
|
static void (*__free)(void *) = NULL;
|
|
|
|
// hashmap_set_allocator allows for configuring a custom allocator for
|
|
// all hashmap library operations. This function, if needed, should be called
|
|
// only once at startup and a prior to calling hashmap_new().
|
|
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*)) {
|
|
__malloc = malloc;
|
|
__free = free;
|
|
}
|
|
|
|
struct bucket {
|
|
uint64_t hash:48;
|
|
uint64_t dib:16;
|
|
};
|
|
|
|
// hashmap is an open addressed hash map using robinhood hashing.
|
|
struct hashmap {
|
|
void *(*malloc)(size_t);
|
|
void *(*realloc)(void *, size_t);
|
|
void (*free)(void *);
|
|
size_t elsize;
|
|
size_t cap;
|
|
uint64_t seed0;
|
|
uint64_t seed1;
|
|
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
|
|
int (*compare)(const void *a, const void *b, void *udata);
|
|
void (*elfree)(void *item);
|
|
void *udata;
|
|
size_t bucketsz;
|
|
size_t nbuckets;
|
|
size_t count;
|
|
size_t mask;
|
|
size_t growat;
|
|
size_t shrinkat;
|
|
uint8_t loadfactor;
|
|
uint8_t growpower;
|
|
bool oom;
|
|
void *buckets;
|
|
void *spare;
|
|
void *edata;
|
|
};
|
|
|
|
void hashmap_set_grow_by_power(struct hashmap *map, size_t power) {
|
|
map->growpower = power < 1 ? 1 : power > 16 ? 16 : power;
|
|
}
|
|
|
|
static double clamp_load_factor(double factor, double default_factor) {
|
|
// Check for NaN and clamp between 50% and 90%
|
|
return factor != factor ? default_factor :
|
|
factor < 0.50 ? 0.50 :
|
|
factor > 0.95 ? 0.95 :
|
|
factor;
|
|
}
|
|
|
|
void hashmap_set_load_factor(struct hashmap *map, double factor) {
|
|
factor = clamp_load_factor(factor, map->loadfactor / 100.0);
|
|
map->loadfactor = factor * 100;
|
|
map->growat = map->nbuckets * (map->loadfactor / 100.0);
|
|
}
|
|
|
|
static struct bucket *bucket_at0(void *buckets, size_t bucketsz, size_t i) {
|
|
return (struct bucket*)(((char*)buckets)+(bucketsz*i));
|
|
}
|
|
|
|
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
|
|
return bucket_at0(map->buckets, map->bucketsz, index);
|
|
}
|
|
|
|
static void *bucket_item(struct bucket *entry) {
|
|
return ((char*)entry)+sizeof(struct bucket);
|
|
}
|
|
|
|
static uint64_t clip_hash(uint64_t hash) {
|
|
return hash & 0xFFFFFFFFFFFF;
|
|
}
|
|
|
|
static uint64_t get_hash(struct hashmap *map, const void *key) {
|
|
return clip_hash(map->hash(key, map->seed0, map->seed1));
|
|
}
|
|
|
|
|
|
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
|
|
// See hashmap_new for more information information
|
|
struct hashmap *hashmap_new_with_allocator(void *(*_malloc)(size_t),
|
|
void *(*_realloc)(void*, size_t), void (*_free)(void*),
|
|
size_t elsize, size_t cap, uint64_t seed0, uint64_t seed1,
|
|
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
|
|
int (*compare)(const void *a, const void *b, void *udata),
|
|
void (*elfree)(void *item),
|
|
void *udata)
|
|
{
|
|
_malloc = _malloc ? _malloc : __malloc ? __malloc : malloc;
|
|
_realloc = _realloc ? _realloc : __realloc ? __realloc : realloc;
|
|
_free = _free ? _free : __free ? __free : free;
|
|
size_t ncap = 16;
|
|
if (cap < ncap) {
|
|
cap = ncap;
|
|
} else {
|
|
while (ncap < cap) {
|
|
ncap *= 2;
|
|
}
|
|
cap = ncap;
|
|
}
|
|
size_t bucketsz = sizeof(struct bucket) + elsize;
|
|
while (bucketsz & (sizeof(uintptr_t)-1)) {
|
|
bucketsz++;
|
|
}
|
|
// hashmap + spare + edata
|
|
size_t size = sizeof(struct hashmap)+bucketsz*2;
|
|
struct hashmap *map = _malloc(size);
|
|
if (!map) {
|
|
return NULL;
|
|
}
|
|
memset(map, 0, sizeof(struct hashmap));
|
|
map->elsize = elsize;
|
|
map->bucketsz = bucketsz;
|
|
map->seed0 = seed0;
|
|
map->seed1 = seed1;
|
|
map->hash = hash;
|
|
map->compare = compare;
|
|
map->elfree = elfree;
|
|
map->udata = udata;
|
|
map->spare = ((char*)map)+sizeof(struct hashmap);
|
|
map->edata = (char*)map->spare+bucketsz;
|
|
map->cap = cap;
|
|
map->nbuckets = cap;
|
|
map->mask = map->nbuckets-1;
|
|
map->buckets = _malloc(map->bucketsz*map->nbuckets);
|
|
if (!map->buckets) {
|
|
_free(map);
|
|
return NULL;
|
|
}
|
|
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
|
|
map->growpower = 1;
|
|
map->loadfactor = clamp_load_factor(HASHMAP_LOAD_FACTOR, GROW_AT) * 100;
|
|
map->growat = map->nbuckets * (map->loadfactor / 100.0);
|
|
map->shrinkat = map->nbuckets * SHRINK_AT;
|
|
map->malloc = _malloc;
|
|
map->realloc = _realloc;
|
|
map->free = _free;
|
|
return map;
|
|
}
|
|
|
|
// hashmap_new returns a new hash map.
|
|
// Param `elsize` is the size of each element in the tree. Every element that
|
|
// is inserted, deleted, or retrieved will be this size.
|
|
// Param `cap` is the default lower capacity of the hashmap. Setting this to
|
|
// zero will default to 16.
|
|
// Params `seed0` and `seed1` are optional seed values that are passed to the
|
|
// following `hash` function. These can be any value you wish but it's often
|
|
// best to use randomly generated values.
|
|
// Param `hash` is a function that generates a hash value for an item. It's
|
|
// important that you provide a good hash function, otherwise it will perform
|
|
// poorly or be vulnerable to Denial-of-service attacks. This implementation
|
|
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
|
|
// Param `compare` is a function that compares items in the tree. See the
|
|
// qsort stdlib function for an example of how this function works.
|
|
// The hashmap must be freed with hashmap_free().
|
|
// Param `elfree` is a function that frees a specific item. This should be NULL
|
|
// unless you're storing some kind of reference data in the hash.
|
|
struct hashmap *hashmap_new(size_t elsize, size_t cap, uint64_t seed0,
|
|
uint64_t seed1,
|
|
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
|
|
int (*compare)(const void *a, const void *b, void *udata),
|
|
void (*elfree)(void *item),
|
|
void *udata)
|
|
{
|
|
return hashmap_new_with_allocator(NULL, NULL, NULL, elsize, cap, seed0,
|
|
seed1, hash, compare, elfree, udata);
|
|
}
|
|
|
|
static void free_elements(struct hashmap *map) {
|
|
if (map->elfree) {
|
|
for (size_t i = 0; i < map->nbuckets; i++) {
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (bucket->dib) map->elfree(bucket_item(bucket));
|
|
}
|
|
}
|
|
}
|
|
|
|
// hashmap_clear quickly clears the map.
|
|
// Every item is called with the element-freeing function given in hashmap_new,
|
|
// if present, to free any data referenced in the elements of the hashmap.
|
|
// When the update_cap is provided, the map's capacity will be updated to match
|
|
// the currently number of allocated buckets. This is an optimization to ensure
|
|
// that this operation does not perform any allocations.
|
|
void hashmap_clear(struct hashmap *map, bool update_cap) {
|
|
map->count = 0;
|
|
free_elements(map);
|
|
if (update_cap) {
|
|
map->cap = map->nbuckets;
|
|
} else if (map->nbuckets != map->cap) {
|
|
void *new_buckets = map->malloc(map->bucketsz*map->cap);
|
|
if (new_buckets) {
|
|
map->free(map->buckets);
|
|
map->buckets = new_buckets;
|
|
}
|
|
map->nbuckets = map->cap;
|
|
}
|
|
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
|
|
map->mask = map->nbuckets-1;
|
|
map->growat = map->nbuckets * (map->loadfactor / 100.0) ;
|
|
map->shrinkat = map->nbuckets * SHRINK_AT;
|
|
}
|
|
|
|
static bool resize0(struct hashmap *map, size_t new_cap) {
|
|
struct hashmap *map2 = hashmap_new_with_allocator(map->malloc, map->realloc,
|
|
map->free, map->elsize, new_cap, map->seed0, map->seed1, map->hash,
|
|
map->compare, map->elfree, map->udata);
|
|
if (!map2) return false;
|
|
for (size_t i = 0; i < map->nbuckets; i++) {
|
|
struct bucket *entry = bucket_at(map, i);
|
|
if (!entry->dib) {
|
|
continue;
|
|
}
|
|
entry->dib = 1;
|
|
size_t j = entry->hash & map2->mask;
|
|
while(1) {
|
|
struct bucket *bucket = bucket_at(map2, j);
|
|
if (bucket->dib == 0) {
|
|
memcpy(bucket, entry, map->bucketsz);
|
|
break;
|
|
}
|
|
if (bucket->dib < entry->dib) {
|
|
memcpy(map2->spare, bucket, map->bucketsz);
|
|
memcpy(bucket, entry, map->bucketsz);
|
|
memcpy(entry, map2->spare, map->bucketsz);
|
|
}
|
|
j = (j + 1) & map2->mask;
|
|
entry->dib += 1;
|
|
}
|
|
}
|
|
map->free(map->buckets);
|
|
map->buckets = map2->buckets;
|
|
map->nbuckets = map2->nbuckets;
|
|
map->mask = map2->mask;
|
|
map->growat = map2->growat;
|
|
map->shrinkat = map2->shrinkat;
|
|
map->free(map2);
|
|
return true;
|
|
}
|
|
|
|
static bool resize(struct hashmap *map, size_t new_cap) {
|
|
return resize0(map, new_cap);
|
|
}
|
|
|
|
// hashmap_set_with_hash works like hashmap_set but you provide your
|
|
// own hash. The 'hash' callback provided to the hashmap_new function
|
|
// will not be called
|
|
const void *hashmap_set_with_hash(struct hashmap *map, const void *item,
|
|
uint64_t hash)
|
|
{
|
|
hash = clip_hash(hash);
|
|
map->oom = false;
|
|
if (map->count >= map->growat) {
|
|
if (!resize(map, map->nbuckets*(1<<map->growpower))) {
|
|
map->oom = true;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
struct bucket *entry = map->edata;
|
|
entry->hash = hash;
|
|
entry->dib = 1;
|
|
void *eitem = bucket_item(entry);
|
|
memcpy(eitem, item, map->elsize);
|
|
|
|
void *bitem;
|
|
size_t i = entry->hash & map->mask;
|
|
while(1) {
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (bucket->dib == 0) {
|
|
memcpy(bucket, entry, map->bucketsz);
|
|
map->count++;
|
|
return NULL;
|
|
}
|
|
bitem = bucket_item(bucket);
|
|
if (entry->hash == bucket->hash && (!map->compare ||
|
|
map->compare(eitem, bitem, map->udata) == 0))
|
|
{
|
|
memcpy(map->spare, bitem, map->elsize);
|
|
memcpy(bitem, eitem, map->elsize);
|
|
return map->spare;
|
|
}
|
|
if (bucket->dib < entry->dib) {
|
|
memcpy(map->spare, bucket, map->bucketsz);
|
|
memcpy(bucket, entry, map->bucketsz);
|
|
memcpy(entry, map->spare, map->bucketsz);
|
|
eitem = bucket_item(entry);
|
|
}
|
|
i = (i + 1) & map->mask;
|
|
entry->dib += 1;
|
|
}
|
|
}
|
|
|
|
// hashmap_set inserts or replaces an item in the hash map. If an item is
|
|
// replaced then it is returned otherwise NULL is returned. This operation
|
|
// may allocate memory. If the system is unable to allocate additional
|
|
// memory then NULL is returned and hashmap_oom() returns true.
|
|
const void *hashmap_set(struct hashmap *map, const void *item) {
|
|
return hashmap_set_with_hash(map, item, get_hash(map, item));
|
|
}
|
|
|
|
// hashmap_get_with_hash works like hashmap_get but you provide your
|
|
// own hash. The 'hash' callback provided to the hashmap_new function
|
|
// will not be called
|
|
const void *hashmap_get_with_hash(struct hashmap *map, const void *key,
|
|
uint64_t hash)
|
|
{
|
|
hash = clip_hash(hash);
|
|
size_t i = hash & map->mask;
|
|
while(1) {
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (!bucket->dib) return NULL;
|
|
if (bucket->hash == hash) {
|
|
void *bitem = bucket_item(bucket);
|
|
if (!map->compare || map->compare(key, bitem, map->udata) == 0) {
|
|
return bitem;
|
|
}
|
|
}
|
|
i = (i + 1) & map->mask;
|
|
}
|
|
}
|
|
|
|
// hashmap_get returns the item based on the provided key. If the item is not
|
|
// found then NULL is returned.
|
|
const void *hashmap_get(struct hashmap *map, const void *key) {
|
|
return hashmap_get_with_hash(map, key, get_hash(map, key));
|
|
}
|
|
|
|
// hashmap_probe returns the item in the bucket at position or NULL if an item
|
|
// is not set for that bucket. The position is 'moduloed' by the number of
|
|
// buckets in the hashmap.
|
|
const void *hashmap_probe(struct hashmap *map, uint64_t position) {
|
|
size_t i = position & map->mask;
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (!bucket->dib) {
|
|
return NULL;
|
|
}
|
|
return bucket_item(bucket);
|
|
}
|
|
|
|
// hashmap_delete_with_hash works like hashmap_delete but you provide your
|
|
// own hash. The 'hash' callback provided to the hashmap_new function
|
|
// will not be called
|
|
const void *hashmap_delete_with_hash(struct hashmap *map, const void *key,
|
|
uint64_t hash)
|
|
{
|
|
hash = clip_hash(hash);
|
|
map->oom = false;
|
|
size_t i = hash & map->mask;
|
|
while(1) {
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (!bucket->dib) {
|
|
return NULL;
|
|
}
|
|
void *bitem = bucket_item(bucket);
|
|
if (bucket->hash == hash && (!map->compare ||
|
|
map->compare(key, bitem, map->udata) == 0))
|
|
{
|
|
memcpy(map->spare, bitem, map->elsize);
|
|
bucket->dib = 0;
|
|
while(1) {
|
|
struct bucket *prev = bucket;
|
|
i = (i + 1) & map->mask;
|
|
bucket = bucket_at(map, i);
|
|
if (bucket->dib <= 1) {
|
|
prev->dib = 0;
|
|
break;
|
|
}
|
|
memcpy(prev, bucket, map->bucketsz);
|
|
prev->dib--;
|
|
}
|
|
map->count--;
|
|
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
|
|
// Ignore the return value. It's ok for the resize operation to
|
|
// fail to allocate enough memory because a shrink operation
|
|
// does not change the integrity of the data.
|
|
resize(map, map->nbuckets/2);
|
|
}
|
|
return map->spare;
|
|
}
|
|
i = (i + 1) & map->mask;
|
|
}
|
|
}
|
|
|
|
// hashmap_delete removes an item from the hash map and returns it. If the
|
|
// item is not found then NULL is returned.
|
|
const void *hashmap_delete(struct hashmap *map, const void *key) {
|
|
return hashmap_delete_with_hash(map, key, get_hash(map, key));
|
|
}
|
|
|
|
// hashmap_count returns the number of items in the hash map.
|
|
size_t hashmap_count(struct hashmap *map) {
|
|
return map->count;
|
|
}
|
|
|
|
// hashmap_free frees the hash map
|
|
// Every item is called with the element-freeing function given in hashmap_new,
|
|
// if present, to free any data referenced in the elements of the hashmap.
|
|
void hashmap_free(struct hashmap *map) {
|
|
if (!map) return;
|
|
free_elements(map);
|
|
map->free(map->buckets);
|
|
map->free(map);
|
|
}
|
|
|
|
// hashmap_oom returns true if the last hashmap_set() call failed due to the
|
|
// system being out of memory.
|
|
bool hashmap_oom(struct hashmap *map) {
|
|
return map->oom;
|
|
}
|
|
|
|
// hashmap_scan iterates over all items in the hash map
|
|
// Param `iter` can return false to stop iteration early.
|
|
// Returns false if the iteration has been stopped early.
|
|
bool hashmap_scan(struct hashmap *map,
|
|
bool (*iter)(const void *item, void *udata), void *udata)
|
|
{
|
|
for (size_t i = 0; i < map->nbuckets; i++) {
|
|
struct bucket *bucket = bucket_at(map, i);
|
|
if (bucket->dib && !iter(bucket_item(bucket), udata)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// hashmap_iter iterates one key at a time yielding a reference to an
|
|
// entry at each iteration. Useful to write simple loops and avoid writing
|
|
// dedicated callbacks and udata structures, as in hashmap_scan.
|
|
//
|
|
// map is a hash map handle. i is a pointer to a size_t cursor that
|
|
// should be initialized to 0 at the beginning of the loop. item is a void
|
|
// pointer pointer that is populated with the retrieved item. Note that this
|
|
// is NOT a copy of the item stored in the hash map and can be directly
|
|
// modified.
|
|
//
|
|
// Note that if hashmap_delete() is called on the hashmap being iterated,
|
|
// the buckets are rearranged and the iterator must be reset to 0, otherwise
|
|
// unexpected results may be returned after deletion.
|
|
//
|
|
// This function has not been tested for thread safety.
|
|
//
|
|
// The function returns true if an item was retrieved; false if the end of the
|
|
// iteration has been reached.
|
|
bool hashmap_iter(struct hashmap *map, size_t *i, void **item) {
|
|
struct bucket *bucket;
|
|
do {
|
|
if (*i >= map->nbuckets) return false;
|
|
bucket = bucket_at(map, *i);
|
|
(*i)++;
|
|
} while (!bucket->dib);
|
|
*item = bucket_item(bucket);
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// SipHash reference C implementation
|
|
//
|
|
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
|
|
// <jeanphilippe.aumasson@gmail.com>
|
|
// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
|
|
//
|
|
// To the extent possible under law, the author(s) have dedicated all copyright
|
|
// and related and neighboring rights to this software to the public domain
|
|
// worldwide. This software is distributed without any warranty.
|
|
//
|
|
// You should have received a copy of the CC0 Public Domain Dedication along
|
|
// with this software. If not, see
|
|
// <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|
//
|
|
// default: SipHash-2-4
|
|
//-----------------------------------------------------------------------------
|
|
static uint64_t SIP64(const uint8_t *in, const size_t inlen, uint64_t seed0,
|
|
uint64_t seed1)
|
|
{
|
|
#define U8TO64_LE(p) \
|
|
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
|
|
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
|
|
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
|
|
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
|
|
#define U64TO8_LE(p, v) \
|
|
{ U32TO8_LE((p), (uint32_t)((v))); \
|
|
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
|
|
#define U32TO8_LE(p, v) \
|
|
{ (p)[0] = (uint8_t)((v)); \
|
|
(p)[1] = (uint8_t)((v) >> 8); \
|
|
(p)[2] = (uint8_t)((v) >> 16); \
|
|
(p)[3] = (uint8_t)((v) >> 24); }
|
|
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
|
|
#define SIPROUND \
|
|
{ v0 += v1; v1 = ROTL(v1, 13); \
|
|
v1 ^= v0; v0 = ROTL(v0, 32); \
|
|
v2 += v3; v3 = ROTL(v3, 16); \
|
|
v3 ^= v2; \
|
|
v0 += v3; v3 = ROTL(v3, 21); \
|
|
v3 ^= v0; \
|
|
v2 += v1; v1 = ROTL(v1, 17); \
|
|
v1 ^= v2; v2 = ROTL(v2, 32); }
|
|
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
|
|
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
|
|
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
|
|
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
|
|
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
|
|
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
|
|
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
|
|
for (; in != end; in += 8) {
|
|
uint64_t m = U8TO64_LE(in);
|
|
v3 ^= m;
|
|
SIPROUND; SIPROUND;
|
|
v0 ^= m;
|
|
}
|
|
const int left = inlen & 7;
|
|
uint64_t b = ((uint64_t)inlen) << 56;
|
|
switch (left) {
|
|
case 7: b |= ((uint64_t)in[6]) << 48; /* fall through */
|
|
case 6: b |= ((uint64_t)in[5]) << 40; /* fall through */
|
|
case 5: b |= ((uint64_t)in[4]) << 32; /* fall through */
|
|
case 4: b |= ((uint64_t)in[3]) << 24; /* fall through */
|
|
case 3: b |= ((uint64_t)in[2]) << 16; /* fall through */
|
|
case 2: b |= ((uint64_t)in[1]) << 8; /* fall through */
|
|
case 1: b |= ((uint64_t)in[0]); break;
|
|
case 0: break;
|
|
}
|
|
v3 ^= b;
|
|
SIPROUND; SIPROUND;
|
|
v0 ^= b;
|
|
v2 ^= 0xff;
|
|
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
|
|
b = v0 ^ v1 ^ v2 ^ v3;
|
|
uint64_t out = 0;
|
|
U64TO8_LE((uint8_t*)&out, b);
|
|
return out;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
|
// domain. The author hereby disclaims copyright to this source code.
|
|
//
|
|
// Murmur3_86_128
|
|
//-----------------------------------------------------------------------------
|
|
static uint64_t MM86128(const void *key, const int len, uint32_t seed) {
|
|
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
|
|
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
|
|
const uint8_t * data = (const uint8_t*)key;
|
|
const int nblocks = len / 16;
|
|
uint32_t h1 = seed;
|
|
uint32_t h2 = seed;
|
|
uint32_t h3 = seed;
|
|
uint32_t h4 = seed;
|
|
uint32_t c1 = 0x239b961b;
|
|
uint32_t c2 = 0xab0e9789;
|
|
uint32_t c3 = 0x38b34ae5;
|
|
uint32_t c4 = 0xa1e38b93;
|
|
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
|
|
for (int i = -nblocks; i; i++) {
|
|
uint32_t k1 = blocks[i*4+0];
|
|
uint32_t k2 = blocks[i*4+1];
|
|
uint32_t k3 = blocks[i*4+2];
|
|
uint32_t k4 = blocks[i*4+3];
|
|
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
|
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
|
|
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
|
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
|
|
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
|
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
|
|
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
|
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
|
|
}
|
|
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
|
uint32_t k1 = 0;
|
|
uint32_t k2 = 0;
|
|
uint32_t k3 = 0;
|
|
uint32_t k4 = 0;
|
|
switch(len & 15) {
|
|
case 15: k4 ^= tail[14] << 16; /* fall through */
|
|
case 14: k4 ^= tail[13] << 8; /* fall through */
|
|
case 13: k4 ^= tail[12] << 0;
|
|
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
|
/* fall through */
|
|
case 12: k3 ^= tail[11] << 24; /* fall through */
|
|
case 11: k3 ^= tail[10] << 16; /* fall through */
|
|
case 10: k3 ^= tail[ 9] << 8; /* fall through */
|
|
case 9: k3 ^= tail[ 8] << 0;
|
|
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
|
/* fall through */
|
|
case 8: k2 ^= tail[ 7] << 24; /* fall through */
|
|
case 7: k2 ^= tail[ 6] << 16; /* fall through */
|
|
case 6: k2 ^= tail[ 5] << 8; /* fall through */
|
|
case 5: k2 ^= tail[ 4] << 0;
|
|
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
|
/* fall through */
|
|
case 4: k1 ^= tail[ 3] << 24; /* fall through */
|
|
case 3: k1 ^= tail[ 2] << 16; /* fall through */
|
|
case 2: k1 ^= tail[ 1] << 8; /* fall through */
|
|
case 1: k1 ^= tail[ 0] << 0;
|
|
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
|
/* fall through */
|
|
};
|
|
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
|
|
h1 += h2; h1 += h3; h1 += h4;
|
|
h2 += h1; h3 += h1; h4 += h1;
|
|
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
|
|
h1 += h2; h1 += h3; h1 += h4;
|
|
h2 += h1; h3 += h1; h4 += h1;
|
|
return (((uint64_t)h2)<<32)|h1;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// xxHash Library
|
|
// Copyright (c) 2012-2021 Yann Collet
|
|
// All rights reserved.
|
|
//
|
|
// BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
|
|
//
|
|
// xxHash3
|
|
//-----------------------------------------------------------------------------
|
|
#define XXH_PRIME_1 11400714785074694791ULL
|
|
#define XXH_PRIME_2 14029467366897019727ULL
|
|
#define XXH_PRIME_3 1609587929392839161ULL
|
|
#define XXH_PRIME_4 9650029242287828579ULL
|
|
#define XXH_PRIME_5 2870177450012600261ULL
|
|
|
|
static uint64_t XXH_read64(const void* memptr) {
|
|
uint64_t val;
|
|
memcpy(&val, memptr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
static uint32_t XXH_read32(const void* memptr) {
|
|
uint32_t val;
|
|
memcpy(&val, memptr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
static uint64_t XXH_rotl64(uint64_t x, int r) {
|
|
return (x << r) | (x >> (64 - r));
|
|
}
|
|
|
|
static uint64_t xxh3(const void* data, size_t len, uint64_t seed) {
|
|
const uint8_t* p = (const uint8_t*)data;
|
|
const uint8_t* const end = p + len;
|
|
uint64_t h64;
|
|
|
|
if (len >= 32) {
|
|
const uint8_t* const limit = end - 32;
|
|
uint64_t v1 = seed + XXH_PRIME_1 + XXH_PRIME_2;
|
|
uint64_t v2 = seed + XXH_PRIME_2;
|
|
uint64_t v3 = seed + 0;
|
|
uint64_t v4 = seed - XXH_PRIME_1;
|
|
|
|
do {
|
|
v1 += XXH_read64(p) * XXH_PRIME_2;
|
|
v1 = XXH_rotl64(v1, 31);
|
|
v1 *= XXH_PRIME_1;
|
|
|
|
v2 += XXH_read64(p + 8) * XXH_PRIME_2;
|
|
v2 = XXH_rotl64(v2, 31);
|
|
v2 *= XXH_PRIME_1;
|
|
|
|
v3 += XXH_read64(p + 16) * XXH_PRIME_2;
|
|
v3 = XXH_rotl64(v3, 31);
|
|
v3 *= XXH_PRIME_1;
|
|
|
|
v4 += XXH_read64(p + 24) * XXH_PRIME_2;
|
|
v4 = XXH_rotl64(v4, 31);
|
|
v4 *= XXH_PRIME_1;
|
|
|
|
p += 32;
|
|
} while (p <= limit);
|
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) +
|
|
XXH_rotl64(v4, 18);
|
|
|
|
v1 *= XXH_PRIME_2;
|
|
v1 = XXH_rotl64(v1, 31);
|
|
v1 *= XXH_PRIME_1;
|
|
h64 ^= v1;
|
|
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
|
|
|
|
v2 *= XXH_PRIME_2;
|
|
v2 = XXH_rotl64(v2, 31);
|
|
v2 *= XXH_PRIME_1;
|
|
h64 ^= v2;
|
|
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
|
|
|
|
v3 *= XXH_PRIME_2;
|
|
v3 = XXH_rotl64(v3, 31);
|
|
v3 *= XXH_PRIME_1;
|
|
h64 ^= v3;
|
|
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
|
|
|
|
v4 *= XXH_PRIME_2;
|
|
v4 = XXH_rotl64(v4, 31);
|
|
v4 *= XXH_PRIME_1;
|
|
h64 ^= v4;
|
|
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
|
|
}
|
|
else {
|
|
h64 = seed + XXH_PRIME_5;
|
|
}
|
|
|
|
h64 += (uint64_t)len;
|
|
|
|
while (p + 8 <= end) {
|
|
uint64_t k1 = XXH_read64(p);
|
|
k1 *= XXH_PRIME_2;
|
|
k1 = XXH_rotl64(k1, 31);
|
|
k1 *= XXH_PRIME_1;
|
|
h64 ^= k1;
|
|
h64 = XXH_rotl64(h64, 27) * XXH_PRIME_1 + XXH_PRIME_4;
|
|
p += 8;
|
|
}
|
|
|
|
if (p + 4 <= end) {
|
|
h64 ^= (uint64_t)(XXH_read32(p)) * XXH_PRIME_1;
|
|
h64 = XXH_rotl64(h64, 23) * XXH_PRIME_2 + XXH_PRIME_3;
|
|
p += 4;
|
|
}
|
|
|
|
while (p < end) {
|
|
h64 ^= (*p) * XXH_PRIME_5;
|
|
h64 = XXH_rotl64(h64, 11) * XXH_PRIME_1;
|
|
p++;
|
|
}
|
|
|
|
h64 ^= h64 >> 33;
|
|
h64 *= XXH_PRIME_2;
|
|
h64 ^= h64 >> 29;
|
|
h64 *= XXH_PRIME_3;
|
|
h64 ^= h64 >> 32;
|
|
|
|
return h64;
|
|
}
|
|
|
|
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
|
|
uint64_t hashmap_sip(const void *data, size_t len, uint64_t seed0,
|
|
uint64_t seed1)
|
|
{
|
|
return SIP64((uint8_t*)data, len, seed0, seed1);
|
|
}
|
|
|
|
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
|
|
uint64_t hashmap_murmur(const void *data, size_t len, uint64_t seed0,
|
|
uint64_t seed1)
|
|
{
|
|
(void)seed1;
|
|
return MM86128(data, len, seed0);
|
|
}
|
|
|
|
uint64_t hashmap_xxhash3(const void *data, size_t len, uint64_t seed0,
|
|
uint64_t seed1)
|
|
{
|
|
(void)seed1;
|
|
return xxh3(data, len ,seed0);
|
|
}
|
|
|
|
//==============================================================================
|
|
// TESTS AND BENCHMARKS
|
|
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
|
|
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
|
|
//==============================================================================
|
|
#ifdef HASHMAP_TEST
|
|
|
|
static size_t deepcount(struct hashmap *map) {
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < map->nbuckets; i++) {
|
|
if (bucket_at(map, i)->dib) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic ignored "-Wpedantic"
|
|
#endif
|
|
#ifdef __clang__
|
|
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
|
|
#pragma GCC diagnostic ignored "-Wcompound-token-split-by-macro"
|
|
#pragma GCC diagnostic ignored "-Wgnu-statement-expression-from-macro-expansion"
|
|
#endif
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include "hashmap.h"
|
|
|
|
static bool rand_alloc_fail = false;
|
|
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
|
|
static uintptr_t total_allocs = 0;
|
|
static uintptr_t total_mem = 0;
|
|
|
|
static void *xmalloc(size_t size) {
|
|
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
|
|
return NULL;
|
|
}
|
|
void *mem = malloc(sizeof(uintptr_t)+size);
|
|
assert(mem);
|
|
*(uintptr_t*)mem = size;
|
|
total_allocs++;
|
|
total_mem += size;
|
|
return (char*)mem+sizeof(uintptr_t);
|
|
}
|
|
|
|
static void xfree(void *ptr) {
|
|
if (ptr) {
|
|
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
|
|
free((char*)ptr-sizeof(uintptr_t));
|
|
total_allocs--;
|
|
}
|
|
}
|
|
|
|
static void shuffle(void *array, size_t numels, size_t elsize) {
|
|
char tmp[elsize];
|
|
char *arr = array;
|
|
for (size_t i = 0; i < numels - 1; i++) {
|
|
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
|
|
memcpy(tmp, arr + j * elsize, elsize);
|
|
memcpy(arr + j * elsize, arr + i * elsize, elsize);
|
|
memcpy(arr + i * elsize, tmp, elsize);
|
|
}
|
|
}
|
|
|
|
static bool iter_ints(const void *item, void *udata) {
|
|
int *vals = *(int**)udata;
|
|
vals[*(int*)item] = 1;
|
|
return true;
|
|
}
|
|
|
|
static int compare_ints_udata(const void *a, const void *b, void *udata) {
|
|
return *(int*)a - *(int*)b;
|
|
}
|
|
|
|
static int compare_strs(const void *a, const void *b, void *udata) {
|
|
return strcmp(*(char**)a, *(char**)b);
|
|
}
|
|
|
|
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
|
|
return hashmap_xxhash3(item, sizeof(int), seed0, seed1);
|
|
// return hashmap_sip(item, sizeof(int), seed0, seed1);
|
|
// return hashmap_murmur(item, sizeof(int), seed0, seed1);
|
|
}
|
|
|
|
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
|
|
return hashmap_xxhash3(*(char**)item, strlen(*(char**)item), seed0, seed1);
|
|
// return hashmap_sip(*(char**)item, strlen(*(char**)item), seed0, seed1);
|
|
// return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
|
|
}
|
|
|
|
static void free_str(void *item) {
|
|
xfree(*(char**)item);
|
|
}
|
|
|
|
static void all(void) {
|
|
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
|
|
int N = getenv("N")?atoi(getenv("N")):2000;
|
|
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
|
|
srand(seed);
|
|
|
|
rand_alloc_fail = true;
|
|
|
|
// test sip and murmur hashes
|
|
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
|
|
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
|
|
assert(hashmap_xxhash3("hello", 5, 1, 2) == 2584346877953614258);
|
|
|
|
int *vals;
|
|
while (!(vals = xmalloc(N * sizeof(int)))) {}
|
|
for (int i = 0; i < N; i++) {
|
|
vals[i] = i;
|
|
}
|
|
|
|
struct hashmap *map;
|
|
|
|
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
|
|
hash_int, compare_ints_udata, NULL, NULL))) {}
|
|
shuffle(vals, N, sizeof(int));
|
|
for (int i = 0; i < N; i++) {
|
|
// // printf("== %d ==\n", vals[i]);
|
|
assert(map->count == (size_t)i);
|
|
assert(map->count == hashmap_count(map));
|
|
assert(map->count == deepcount(map));
|
|
const int *v;
|
|
assert(!hashmap_get(map, &vals[i]));
|
|
assert(!hashmap_delete(map, &vals[i]));
|
|
while (true) {
|
|
assert(!hashmap_set(map, &vals[i]));
|
|
if (!hashmap_oom(map)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < i; j++) {
|
|
v = hashmap_get(map, &vals[j]);
|
|
assert(v && *v == vals[j]);
|
|
}
|
|
while (true) {
|
|
v = hashmap_set(map, &vals[i]);
|
|
if (!v) {
|
|
assert(hashmap_oom(map));
|
|
continue;
|
|
} else {
|
|
assert(!hashmap_oom(map));
|
|
assert(v && *v == vals[i]);
|
|
break;
|
|
}
|
|
}
|
|
v = hashmap_get(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
v = hashmap_delete(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
assert(!hashmap_get(map, &vals[i]));
|
|
assert(!hashmap_delete(map, &vals[i]));
|
|
assert(!hashmap_set(map, &vals[i]));
|
|
assert(map->count == (size_t)(i+1));
|
|
assert(map->count == hashmap_count(map));
|
|
assert(map->count == deepcount(map));
|
|
}
|
|
|
|
int *vals2;
|
|
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
|
|
memset(vals2, 0, N * sizeof(int));
|
|
assert(hashmap_scan(map, iter_ints, &vals2));
|
|
|
|
// Test hashmap_iter. This does the same as hashmap_scan above.
|
|
size_t iter = 0;
|
|
void *iter_val;
|
|
while (hashmap_iter (map, &iter, &iter_val)) {
|
|
assert (iter_ints(iter_val, &vals2));
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
assert(vals2[i] == 1);
|
|
}
|
|
xfree(vals2);
|
|
|
|
shuffle(vals, N, sizeof(int));
|
|
for (int i = 0; i < N; i++) {
|
|
const int *v;
|
|
v = hashmap_delete(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
assert(!hashmap_get(map, &vals[i]));
|
|
assert(map->count == (size_t)(N-i-1));
|
|
assert(map->count == hashmap_count(map));
|
|
assert(map->count == deepcount(map));
|
|
for (int j = N-1; j > i; j--) {
|
|
v = hashmap_get(map, &vals[j]);
|
|
assert(v && *v == vals[j]);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
while (true) {
|
|
assert(!hashmap_set(map, &vals[i]));
|
|
if (!hashmap_oom(map)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(map->count != 0);
|
|
size_t prev_cap = map->cap;
|
|
hashmap_clear(map, true);
|
|
assert(prev_cap < map->cap);
|
|
assert(map->count == 0);
|
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
while (true) {
|
|
assert(!hashmap_set(map, &vals[i]));
|
|
if (!hashmap_oom(map)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
prev_cap = map->cap;
|
|
hashmap_clear(map, false);
|
|
assert(prev_cap == map->cap);
|
|
|
|
hashmap_free(map);
|
|
|
|
xfree(vals);
|
|
|
|
|
|
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
|
|
hash_str, compare_strs, free_str, NULL)));
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
char *str;
|
|
while (!(str = xmalloc(16)));
|
|
snprintf(str, 16, "s%i", i);
|
|
while(!hashmap_set(map, &str));
|
|
}
|
|
|
|
hashmap_clear(map, false);
|
|
assert(hashmap_count(map) == 0);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
char *str;
|
|
while (!(str = xmalloc(16)));
|
|
snprintf(str, 16, "s%i", i);
|
|
while(!hashmap_set(map, &str));
|
|
}
|
|
|
|
hashmap_free(map);
|
|
|
|
if (total_allocs != 0) {
|
|
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
#define bench(name, N, code) {{ \
|
|
if (strlen(name) > 0) { \
|
|
printf("%-14s ", name); \
|
|
} \
|
|
size_t tmem = total_mem; \
|
|
size_t tallocs = total_allocs; \
|
|
uint64_t bytes = 0; \
|
|
clock_t begin = clock(); \
|
|
for (int i = 0; i < N; i++) { \
|
|
(code); \
|
|
} \
|
|
clock_t end = clock(); \
|
|
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
|
|
double bytes_sec = (double)bytes/elapsed_secs; \
|
|
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
|
|
N, elapsed_secs, \
|
|
elapsed_secs/(double)N*1e9, \
|
|
(double)N/elapsed_secs \
|
|
); \
|
|
if (bytes > 0) { \
|
|
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
|
|
} \
|
|
if (total_mem > tmem) { \
|
|
size_t used_mem = total_mem-tmem; \
|
|
printf(", %.2f bytes/op", (double)used_mem/N); \
|
|
} \
|
|
if (total_allocs > tallocs) { \
|
|
size_t used_allocs = total_allocs-tallocs; \
|
|
printf(", %.2f allocs/op", (double)used_allocs/N); \
|
|
} \
|
|
printf("\n"); \
|
|
}}
|
|
|
|
static void benchmarks(void) {
|
|
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
|
|
int N = getenv("N")?atoi(getenv("N")):5000000;
|
|
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
|
|
srand(seed);
|
|
|
|
|
|
int *vals = xmalloc(N * sizeof(int));
|
|
for (int i = 0; i < N; i++) {
|
|
vals[i] = i;
|
|
}
|
|
|
|
shuffle(vals, N, sizeof(int));
|
|
|
|
struct hashmap *map;
|
|
shuffle(vals, N, sizeof(int));
|
|
|
|
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
|
|
NULL, NULL);
|
|
bench("set", N, {
|
|
const int *v = hashmap_set(map, &vals[i]);
|
|
assert(!v);
|
|
})
|
|
shuffle(vals, N, sizeof(int));
|
|
bench("get", N, {
|
|
const int *v = hashmap_get(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
})
|
|
shuffle(vals, N, sizeof(int));
|
|
bench("delete", N, {
|
|
const int *v = hashmap_delete(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
})
|
|
hashmap_free(map);
|
|
|
|
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
|
|
NULL, NULL);
|
|
bench("set (cap)", N, {
|
|
const int *v = hashmap_set(map, &vals[i]);
|
|
assert(!v);
|
|
})
|
|
shuffle(vals, N, sizeof(int));
|
|
bench("get (cap)", N, {
|
|
const int *v = hashmap_get(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
})
|
|
shuffle(vals, N, sizeof(int));
|
|
bench("delete (cap)" , N, {
|
|
const int *v = hashmap_delete(map, &vals[i]);
|
|
assert(v && *v == vals[i]);
|
|
})
|
|
|
|
hashmap_free(map);
|
|
|
|
|
|
xfree(vals);
|
|
|
|
if (total_allocs != 0) {
|
|
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int main(void) {
|
|
hashmap_set_allocator(xmalloc, xfree);
|
|
|
|
if (getenv("BENCH")) {
|
|
printf("Running hashmap.c benchmarks...\n");
|
|
benchmarks();
|
|
} else {
|
|
printf("Running hashmap.c tests...\n");
|
|
all();
|
|
printf("PASSED\n");
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|