You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ck/include/ck_spinlock.h

685 lines
16 KiB

/*
* Copyright 2010-2013 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _CK_SPINLOCK_H
#define _CK_SPINLOCK_H
#include <ck_backoff.h>
#include <ck_cc.h>
#include <ck_limits.h>
#include <ck_md.h>
#include <ck_pr.h>
#include <stdbool.h>
#include <stddef.h>
/*
* On tested x86, x86_64, PPC64 and SPARC64 targets,
* ck_spinlock_fas proved to have lowest latency
* in fast path testing or negligible degradation
* from faster but less robust implementations.
*/
#define CK_SPINLOCK_INITIALIZER CK_SPINLOCK_FAS_INITIALIZER
#define ck_spinlock_t ck_spinlock_fas_t
#define ck_spinlock_init(x) ck_spinlock_fas_init(x)
#define ck_spinlock_lock(x) ck_spinlock_fas_lock(x)
#define ck_spinlock_lock_eb(x) ck_spinlock_fas_lock_eb(x)
#define ck_spinlock_unlock(x) ck_spinlock_fas_unlock(x)
#define ck_spinlock_locked(x) ck_spinlock_fas_locked(x)
#define ck_spinlock_trylock(x) ck_spinlock_fas_trylock(x)
#ifndef CK_F_SPINLOCK_ANDERSON
#define CK_F_SPINLOCK_ANDERSON
/*
* This is an implementation of Anderson's array-based queuing lock.
*/
struct ck_spinlock_anderson_thread {
unsigned int locked;
unsigned int position;
};
typedef struct ck_spinlock_anderson_thread ck_spinlock_anderson_thread_t;
struct ck_spinlock_anderson {
struct ck_spinlock_anderson_thread *slots;
unsigned int count;
unsigned int wrap;
unsigned int mask;
char pad[CK_MD_CACHELINE - sizeof(unsigned int) * 3 - sizeof(void *)];
unsigned int next;
};
typedef struct ck_spinlock_anderson ck_spinlock_anderson_t;
CK_CC_INLINE static void
ck_spinlock_anderson_init(struct ck_spinlock_anderson *lock,
struct ck_spinlock_anderson_thread *slots,
unsigned int count)
{
unsigned int i;
slots[0].locked = false;
slots[0].position = 0;
for (i = 1; i < count; i++) {
slots[i].locked = true;
slots[i].position = i;
}
lock->slots = slots;
lock->count = count;
lock->mask = count - 1;
lock->next = 0;
/*
* If the number of threads is not a power of two then compute
* appropriate wrap-around value in the case of next slot counter
* overflow.
*/
if (count & (count - 1))
lock->wrap = (UINT_MAX % count) + 1;
else
lock->wrap = 0;
ck_pr_fence_store();
return;
}
CK_CC_INLINE static void
ck_spinlock_anderson_lock(struct ck_spinlock_anderson *lock,
struct ck_spinlock_anderson_thread **slot)
{
unsigned int position, next;
unsigned int count = lock->count;
/*
* If count is not a power of 2, then it is possible for an overflow
* to reallocate beginning slots to more than one thread. To avoid this
* use a compare-and-swap.
*/
if (lock->wrap != 0) {
position = ck_pr_load_uint(&lock->next);
do {
if (position == UINT_MAX)
next = lock->wrap;
else
next = position + 1;
} while (ck_pr_cas_uint_value(&lock->next, position,
next, &position) == false);
position %= count;
} else {
position = ck_pr_faa_uint(&lock->next, 1);
position &= lock->mask;
}
/* Serialize with respect to previous thread's store. */
ck_pr_fence_load();
/* Spin until slot is marked as unlocked. First slot is initialized to false. */
while (ck_pr_load_uint(&lock->slots[position].locked) == true)
ck_pr_stall();
/* Prepare slot for potential re-use by another thread. */
ck_pr_store_uint(&lock->slots[position].locked, true);
ck_pr_fence_store();
*slot = lock->slots + position;
return;
}
CK_CC_INLINE static void
ck_spinlock_anderson_unlock(struct ck_spinlock_anderson *lock,
struct ck_spinlock_anderson_thread *slot)
{
unsigned int position;
ck_pr_fence_memory();
/* Mark next slot as available. */
if (lock->wrap == 0)
position = (slot->position + 1) & lock->mask;
else
position = (slot->position + 1) % lock->count;
ck_pr_store_uint(&lock->slots[position].locked, false);
return;
}
#endif /* CK_F_SPINLOCK_ANDERSON */
#ifndef CK_F_SPINLOCK_FAS
#define CK_F_SPINLOCK_FAS
struct ck_spinlock_fas {
unsigned int value;
};
typedef struct ck_spinlock_fas ck_spinlock_fas_t;
#define CK_SPINLOCK_FAS_INITIALIZER {false}
CK_CC_INLINE static void
ck_spinlock_fas_init(struct ck_spinlock_fas *lock)
{
ck_pr_store_uint(&lock->value, false);
return;
}
CK_CC_INLINE static bool
ck_spinlock_fas_trylock(struct ck_spinlock_fas *lock)
{
bool value;
value = ck_pr_fas_uint(&lock->value, true);
if (value == false)
ck_pr_fence_memory();
return (!value);
}
CK_CC_INLINE static bool
ck_spinlock_fas_locked(struct ck_spinlock_fas *lock)
{
return ck_pr_load_uint(&lock->value);
}
CK_CC_INLINE static void
ck_spinlock_fas_lock(struct ck_spinlock_fas *lock)
{
while (ck_pr_fas_uint(&lock->value, true) == true) {
while (ck_pr_load_uint(&lock->value) == true)
ck_pr_stall();
}
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_fas_lock_eb(struct ck_spinlock_fas *lock)
{
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
while (ck_pr_fas_uint(&lock->value, true) == true)
ck_backoff_eb(&backoff);
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_fas_unlock(struct ck_spinlock_fas *lock)
{
ck_pr_fence_memory();
ck_pr_store_uint(&lock->value, false);
return;
}
#endif /* CK_F_SPINLOCK_FAS */
#ifndef CK_F_SPINLOCK_CAS
#define CK_F_SPINLOCK_CAS
/*
* This is a simple CACAS (TATAS) spinlock implementation.
*/
struct ck_spinlock_cas {
unsigned int value;
};
typedef struct ck_spinlock_cas ck_spinlock_cas_t;
#define CK_SPINLOCK_CAS_INITIALIZER {false}
CK_CC_INLINE static void
ck_spinlock_cas_init(struct ck_spinlock_cas *lock)
{
ck_pr_store_uint(&lock->value, false);
return;
}
CK_CC_INLINE static bool
ck_spinlock_cas_trylock(struct ck_spinlock_cas *lock)
{
unsigned int value;
value = ck_pr_fas_uint(&lock->value, true);
if (value == false)
ck_pr_fence_memory();
return (!value);
}
CK_CC_INLINE static bool
ck_spinlock_cas_locked(struct ck_spinlock_cas *lock)
{
return ck_pr_load_uint(&lock->value);
}
CK_CC_INLINE static void
ck_spinlock_cas_lock(struct ck_spinlock_cas *lock)
{
while (ck_pr_cas_uint(&lock->value, false, true) == false) {
while (ck_pr_load_uint(&lock->value) == true)
ck_pr_stall();
}
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_cas_lock_eb(struct ck_spinlock_cas *lock)
{
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
while (ck_pr_cas_uint(&lock->value, false, true) == false)
ck_backoff_eb(&backoff);
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_cas_unlock(struct ck_spinlock_cas *lock)
{
/* Set lock state to unlocked. */
ck_pr_fence_memory();
ck_pr_store_uint(&lock->value, false);
return;
}
#endif /* CK_F_SPINLOCK_CAS */
#ifndef CK_F_SPINLOCK_DEC
#define CK_F_SPINLOCK_DEC
/*
* This is similar to the CACAS lock but makes use of an atomic decrement
* operation to check if the lock value was decremented to 0 from 1. The
* idea is that a decrement operation is cheaper than a compare-and-swap.
*/
struct ck_spinlock_dec {
unsigned int value;
};
typedef struct ck_spinlock_dec ck_spinlock_dec_t;
#define CK_SPINLOCK_DEC_INITIALIZER {1}
CK_CC_INLINE static bool
ck_spinlock_dec_trylock(struct ck_spinlock_dec *lock)
{
unsigned int value;
value = ck_pr_fas_uint(&lock->value, 0);
if (value == 1) {
ck_pr_fence_memory();
return true;
}
return false;
}
CK_CC_INLINE static bool
ck_spinlock_dec_locked(struct ck_spinlock_dec *lock)
{
return ck_pr_load_uint(&lock->value) != 1;
}
CK_CC_INLINE static void
ck_spinlock_dec_lock(struct ck_spinlock_dec *lock)
{
bool r;
for (;;) {
/*
* Only one thread is guaranteed to decrement lock to 0.
* Overflow must be protected against. No more than
* UINT_MAX lock requests can happen while the lock is held.
*/
ck_pr_dec_uint_zero(&lock->value, &r);
ck_pr_fence_memory();
if (r == true)
break;
/* Load value without generating write cycles. */
while (ck_pr_load_uint(&lock->value) != 1)
ck_pr_stall();
}
return;
}
CK_CC_INLINE static void
ck_spinlock_dec_lock_eb(struct ck_spinlock_dec *lock)
{
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
bool r;
for (;;) {
ck_pr_dec_uint_zero(&lock->value, &r);
if (r == true)
break;
ck_backoff_eb(&backoff);
}
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_dec_unlock(struct ck_spinlock_dec *lock)
{
ck_pr_fence_memory();
/* Unconditionally set lock value to 1 so someone can decrement lock to 0. */
ck_pr_store_uint(&lock->value, 1);
return;
}
#endif /* CK_F_SPINLOCK_DEC */
#ifndef CK_F_SPINLOCK_TICKET
#define CK_F_SPINLOCK_TICKET
/*
* MESI benefits from cacheline padding between next and current. This avoids
* invalidation of current from the cache due to incoming lock requests.
*/
struct ck_spinlock_ticket {
unsigned int next;
unsigned int position;
};
typedef struct ck_spinlock_ticket ck_spinlock_ticket_t;
#define CK_SPINLOCK_TICKET_INITIALIZER {.next = 0, .position = 0}
CK_CC_INLINE static void
ck_spinlock_ticket_init(struct ck_spinlock_ticket *ticket)
{
ticket->next = 0;
ticket->position = 0;
ck_pr_fence_store();
return;
}
CK_CC_INLINE static void
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket)
{
unsigned int request;
/* Get our ticket number and set next ticket number. */
request = ck_pr_faa_uint(&ticket->next, 1);
/*
* Busy-wait until our ticket number is current.
* We can get away without a fence here assuming
* our position counter does not overflow.
*/
while (ck_pr_load_uint(&ticket->position) != request)
ck_pr_stall();
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_ticket_lock_pb(struct ck_spinlock_ticket *ticket)
{
ck_backoff_t backoff;
unsigned int request, position;
request = ck_pr_faa_uint(&ticket->next, 1);
for (;;) {
position = ck_pr_load_uint(&ticket->position);
if (position == request)
break;
/* Overflow is handled fine, assuming 2s complement. */
backoff = (request - position);
backoff *= 64;
/*
* Ideally, back-off from generating cache traffic for at least
* the amount of time necessary for the number of pending lock
* acquisition and relinquish operations (assuming an empty
* critical section).
*/
ck_backoff_eb(&backoff);
}
ck_pr_fence_memory();
return;
}
CK_CC_INLINE static void
ck_spinlock_ticket_unlock(struct ck_spinlock_ticket *ticket)
{
unsigned int update;
ck_pr_fence_memory();
/*
* Update current ticket value so next lock request can proceed.
* Overflow behavior is assumed to be roll-over, in which case,
* it is only an issue if there are 2^32 pending lock requests.
*/
update = ck_pr_load_uint(&ticket->position);
ck_pr_store_uint(&ticket->position, update + 1);
return;
}
#endif /* CK_F_SPINLOCK_TICKET */
#ifndef CK_F_SPINLOCK_MCS
#define CK_F_SPINLOCK_MCS
struct ck_spinlock_mcs {
unsigned int locked;
struct ck_spinlock_mcs *next;
};
typedef struct ck_spinlock_mcs * ck_spinlock_mcs_t;
typedef struct ck_spinlock_mcs ck_spinlock_mcs_context_t;
#define CK_SPINLOCK_MCS_INITIALIZER (NULL)
#define CK_SPINLOCK_MCS_CONTEXT_INITIALIZER {false, NULL}
CK_CC_INLINE static void
ck_spinlock_mcs_context_init(struct ck_spinlock_mcs *queue)
{
ck_pr_store_uint(&queue->locked, false);
ck_pr_store_ptr(&queue->next, NULL);
return;
}
CK_CC_INLINE static bool
ck_spinlock_mcs_trylock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
{
ck_pr_store_uint(&node->locked, true);
ck_pr_store_ptr(&node->next, NULL);
ck_pr_fence_store();
if (ck_pr_cas_ptr(queue, NULL, node) == true) {
ck_pr_fence_load();
return true;
}
return false;
}
CK_CC_INLINE static bool
ck_spinlock_mcs_locked(struct ck_spinlock_mcs **queue)
{
return ck_pr_load_ptr(queue) != NULL;
}
CK_CC_INLINE static void
ck_spinlock_mcs_lock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
{
struct ck_spinlock_mcs *previous;
/*
* In the case that there is a successor, let them know they must wait
* for us to unlock.
*/
ck_pr_store_uint(&node->locked, true);
ck_pr_store_ptr(&node->next, NULL);
/*
* Swap current tail with current lock request. If the swap operation
* returns NULL, it means the queue was empty. If the queue was empty,
* then the operation is complete.
*/
ck_pr_fence_memory();
previous = ck_pr_fas_ptr(queue, node);
if (previous == NULL)
return;
/* Let the previous lock holder know that we are waiting on them. */
ck_pr_store_ptr(&previous->next, node);
while (ck_pr_load_uint(&node->locked) == true)
ck_pr_stall();
return;
}
CK_CC_INLINE static void
ck_spinlock_mcs_unlock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
{
struct ck_spinlock_mcs *next;
next = ck_pr_load_ptr(&node->next);
if (next == NULL) {
/*
* If there is no request following us then it is a possibilty
* that we are the current tail. In this case, we may just
* mark the spinlock queue as empty.
*/
if (ck_pr_load_ptr(queue) == node &&
ck_pr_cas_ptr(queue, node, NULL) == true) {
ck_pr_fence_memory();
return;
}
/*
* If the node is not the current tail then a lock operation is
* in-progress. In this case, busy-wait until the queue is in
* a consistent state to wake up the incoming lock request.
*/
for (;;) {
next = ck_pr_load_ptr(&node->next);
if (next != NULL)
break;
ck_pr_stall();
}
}
/* Allow the next lock operation to complete. */
ck_pr_fence_memory();
ck_pr_store_uint(&next->locked, false);
return;
}
#endif /* CK_F_SPINLOCK_MCS */
#ifndef CK_F_SPINLOCK_CLH
#define CK_F_SPINLOCK_CLH
struct ck_spinlock_clh {
unsigned int wait;
struct ck_spinlock_clh *previous;
};
typedef struct ck_spinlock_clh ck_spinlock_clh_t;
CK_CC_INLINE static void
ck_spinlock_clh_init(struct ck_spinlock_clh **lock, struct ck_spinlock_clh *unowned)
{
ck_pr_store_ptr(&unowned->previous, NULL);
ck_pr_store_uint(&unowned->wait, false);
ck_pr_store_ptr(lock, unowned);
ck_pr_fence_store();
return;
}
CK_CC_INLINE static void
ck_spinlock_clh_lock(struct ck_spinlock_clh **queue, struct ck_spinlock_clh *thread)
{
struct ck_spinlock_clh *previous;
/* Indicate to the next thread on queue that they will have to block. */
ck_pr_store_uint(&thread->wait, true);
ck_pr_fence_store();
/* Mark current request as last request. Save reference to previous request. */
previous = ck_pr_fas_ptr(queue, thread);
thread->previous = previous;
/* Wait until previous thread is done with lock. */
ck_pr_fence_load();
while (ck_pr_load_uint(&previous->wait) == true)
ck_pr_stall();
return;
}
CK_CC_INLINE static void
ck_spinlock_clh_unlock(struct ck_spinlock_clh **thread)
{
struct ck_spinlock_clh *previous;
/*
* If there are waiters, they are spinning on the current node wait
* flag. The flag is cleared so that the successor may complete an
* acquisition. If the caller is pre-empted then the predecessor field
* may be updated by a successor's lock operation. In order to avoid
* this, save a copy of the predecessor before setting the flag.
*/
previous = thread[0]->previous;
/* We have to pay this cost anyways, use it as a compiler barrier too. */
ck_pr_fence_memory();
ck_pr_store_uint(&(*thread)->wait, false);
/*
* Predecessor is guaranteed not to be spinning on previous request,
* so update caller to use previous structure. This allows successor
* all the time in the world to successfully read updated wait flag.
*/
*thread = previous;
return;
}
#endif /* CK_F_SPINLOCK_CLH */
#endif /* _CK_SPINLOCK_H */