You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
650 lines
16 KiB
650 lines
16 KiB
/*
|
|
* Copyright 2010-2011 Samy Al Bahra.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _CK_SPINLOCK_H
|
|
#define _CK_SPINLOCK_H
|
|
|
|
#include <ck_backoff.h>
|
|
#include <ck_cc.h>
|
|
#include <ck_limits.h>
|
|
#include <ck_md.h>
|
|
#include <ck_pr.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
|
|
/*
|
|
* On tested x86, x86_64, PPC64 and SPARC64 targets,
|
|
* ck_spinlock_fas proved to have lowest latency
|
|
* in fast path testing or negligible degradation
|
|
* from faster but less robust implementations.
|
|
*/
|
|
#define CK_SPINLOCK_INITIALIZER CK_SPINLOCK_FAS_INITIALIZER
|
|
#define ck_spinlock_t ck_spinlock_fas_t
|
|
#define ck_spinlock_init(x) ck_spinlock_fas_init(x)
|
|
#define ck_spinlock_lock(x) ck_spinlock_fas_lock(x)
|
|
#define ck_spinlock_lock_eb(x) ck_spinlock_fas_lock_eb(x)
|
|
#define ck_spinlock_unlock(x) ck_spinlock_fas_unlock(x)
|
|
#define ck_spinlock_locked(x) ck_spinlock_fas_locked(x)
|
|
#define ck_spinlock_trylock(x) ck_spinlock_fas_trylock(x)
|
|
|
|
#ifndef CK_F_SPINLOCK_ANDERSON
|
|
#define CK_F_SPINLOCK_ANDERSON
|
|
/*
|
|
* This is an implementation of Anderson's array-based queuing lock.
|
|
*/
|
|
struct ck_spinlock_anderson_thread {
|
|
unsigned int locked;
|
|
unsigned int position;
|
|
};
|
|
typedef struct ck_spinlock_anderson_thread ck_spinlock_anderson_thread_t;
|
|
|
|
struct ck_spinlock_anderson {
|
|
struct ck_spinlock_anderson_thread *slots;
|
|
unsigned int count;
|
|
unsigned int wrap;
|
|
unsigned int mask;
|
|
char pad[CK_MD_CACHELINE - sizeof(unsigned int) * 3 - sizeof(void *)];
|
|
unsigned int next;
|
|
};
|
|
typedef struct ck_spinlock_anderson ck_spinlock_anderson_t;
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_anderson_init(struct ck_spinlock_anderson *lock,
|
|
struct ck_spinlock_anderson_thread *slots,
|
|
unsigned int count)
|
|
{
|
|
unsigned int i;
|
|
|
|
slots[0].locked = false;
|
|
slots[0].position = 0;
|
|
for (i = 1; i < count; i++) {
|
|
slots[i].locked = true;
|
|
slots[i].position = i;
|
|
}
|
|
|
|
lock->slots = slots;
|
|
lock->count = count;
|
|
lock->mask = count - 1;
|
|
lock->next = 0;
|
|
|
|
/*
|
|
* If the number of threads is not a power of two then compute
|
|
* appropriate wrap-around value in the case of next slot counter
|
|
* overflow.
|
|
*/
|
|
if (count & (count - 1))
|
|
lock->wrap = (UINT_MAX % count) + 1;
|
|
else
|
|
lock->wrap = 0;
|
|
|
|
ck_pr_fence_store();
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_anderson_lock(struct ck_spinlock_anderson *lock,
|
|
struct ck_spinlock_anderson_thread **slot)
|
|
{
|
|
unsigned int position, next;
|
|
unsigned int count = lock->count;
|
|
|
|
/*
|
|
* If count is not a power of 2, then it is possible for an overflow
|
|
* to reallocate beginning slots to more than one thread. To avoid this
|
|
* use a compare-and-swap.
|
|
*/
|
|
if (lock->wrap != 0) {
|
|
position = ck_pr_load_uint(&lock->next);
|
|
|
|
do {
|
|
if (position == UINT_MAX)
|
|
next = lock->wrap;
|
|
else
|
|
next = position + 1;
|
|
} while (ck_pr_cas_uint_value(&lock->next, position,
|
|
next, &position) == false);
|
|
|
|
position %= count;
|
|
} else {
|
|
position = ck_pr_faa_uint(&lock->next, 1);
|
|
position &= lock->mask;
|
|
}
|
|
|
|
/* Spin until slot is marked as unlocked. First slot is initialized to false. */
|
|
while (ck_pr_load_uint(&lock->slots[position].locked) == true)
|
|
ck_pr_stall();
|
|
|
|
/* Prepare slot for potential re-use by another thread. */
|
|
ck_pr_store_uint(&lock->slots[position].locked, true);
|
|
ck_pr_fence_store();
|
|
|
|
*slot = lock->slots + position;
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_anderson_unlock(struct ck_spinlock_anderson *lock,
|
|
struct ck_spinlock_anderson_thread *slot)
|
|
{
|
|
unsigned int position;
|
|
|
|
ck_pr_fence_memory();
|
|
|
|
/* Mark next slot as available. */
|
|
if (lock->wrap == 0)
|
|
position = (slot->position + 1) & lock->mask;
|
|
else
|
|
position = (slot->position + 1) % lock->count;
|
|
|
|
ck_pr_store_uint(&lock->slots[position].locked, false);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_ANDERSON */
|
|
|
|
#ifndef CK_F_SPINLOCK_FAS
|
|
#define CK_F_SPINLOCK_FAS
|
|
|
|
struct ck_spinlock_fas {
|
|
unsigned int value;
|
|
};
|
|
typedef struct ck_spinlock_fas ck_spinlock_fas_t;
|
|
|
|
#define CK_SPINLOCK_FAS_INITIALIZER {false}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_fas_init(struct ck_spinlock_fas *lock)
|
|
{
|
|
|
|
ck_pr_store_uint(&lock->value, false);
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_fas_trylock(struct ck_spinlock_fas *lock)
|
|
{
|
|
bool value;
|
|
|
|
value = ck_pr_fas_uint(&lock->value, true);
|
|
return (!value);
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_fas_locked(struct ck_spinlock_fas *lock)
|
|
{
|
|
|
|
return ck_pr_load_uint(&lock->value);
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_fas_lock(struct ck_spinlock_fas *lock)
|
|
{
|
|
|
|
while (ck_pr_fas_uint(&lock->value, true) == true) {
|
|
while (ck_pr_load_uint(&lock->value) == true)
|
|
ck_pr_stall();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_fas_lock_eb(struct ck_spinlock_fas *lock)
|
|
{
|
|
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
|
|
|
|
while (ck_pr_fas_uint(&lock->value, true) == true)
|
|
ck_backoff_eb(&backoff);
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_fas_unlock(struct ck_spinlock_fas *lock)
|
|
{
|
|
|
|
ck_pr_fence_memory();
|
|
ck_pr_store_uint(&lock->value, false);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_FAS */
|
|
|
|
#ifndef CK_F_SPINLOCK_CAS
|
|
#define CK_F_SPINLOCK_CAS
|
|
/*
|
|
* This is a simple CACAS (TATAS) spinlock implementation.
|
|
*/
|
|
struct ck_spinlock_cas {
|
|
unsigned int value;
|
|
};
|
|
typedef struct ck_spinlock_cas ck_spinlock_cas_t;
|
|
|
|
#define CK_SPINLOCK_CAS_INITIALIZER {false}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_cas_init(struct ck_spinlock_cas *lock)
|
|
{
|
|
|
|
ck_pr_store_uint(&lock->value, false);
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_cas_trylock(struct ck_spinlock_cas *lock)
|
|
{
|
|
unsigned int value;
|
|
|
|
value = ck_pr_fas_uint(&lock->value, true);
|
|
return (!value);
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_cas_locked(struct ck_spinlock_cas *lock)
|
|
{
|
|
|
|
return ck_pr_load_uint(&lock->value);
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_cas_lock(struct ck_spinlock_cas *lock)
|
|
{
|
|
|
|
while (ck_pr_cas_uint(&lock->value, false, true) == false) {
|
|
while (ck_pr_load_uint(&lock->value) == true)
|
|
ck_pr_stall();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_cas_lock_eb(struct ck_spinlock_cas *lock)
|
|
{
|
|
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
|
|
|
|
while (ck_pr_cas_uint(&lock->value, false, true) == false)
|
|
ck_backoff_eb(&backoff);
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_cas_unlock(struct ck_spinlock_cas *lock)
|
|
{
|
|
|
|
/* Set lock state to unlocked. */
|
|
ck_pr_fence_memory();
|
|
ck_pr_store_uint(&lock->value, false);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_CAS */
|
|
|
|
#ifndef CK_F_SPINLOCK_DEC
|
|
#define CK_F_SPINLOCK_DEC
|
|
/*
|
|
* This is similar to the CACAS lock but makes use of an atomic decrement
|
|
* operation to check if the lock value was decremented to 0 from 1. The
|
|
* idea is that a decrement operation is cheaper than a compare-and-swap.
|
|
*/
|
|
struct ck_spinlock_dec {
|
|
unsigned int value;
|
|
};
|
|
typedef struct ck_spinlock_dec ck_spinlock_dec_t;
|
|
|
|
#define CK_SPINLOCK_DEC_INITIALIZER {1}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_dec_trylock(struct ck_spinlock_dec *lock)
|
|
{
|
|
unsigned int value;
|
|
|
|
value = ck_pr_fas_uint(&lock->value, 0);
|
|
ck_pr_fence_store();
|
|
return (value == 1);
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_dec_locked(struct ck_spinlock_dec *lock)
|
|
{
|
|
|
|
return ck_pr_load_uint(&lock->value) != 1;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_dec_lock(struct ck_spinlock_dec *lock)
|
|
{
|
|
bool r;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Only one thread is guaranteed to decrement lock to 0.
|
|
* Overflow must be protected against. No more than
|
|
* UINT_MAX lock requests can happen while the lock is held.
|
|
*/
|
|
ck_pr_dec_uint_zero(&lock->value, &r);
|
|
ck_pr_fence_store();
|
|
if (r == true)
|
|
break;
|
|
|
|
/* Load value without generating write cycles. */
|
|
while (ck_pr_load_uint(&lock->value) != 1)
|
|
ck_pr_stall();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_dec_lock_eb(struct ck_spinlock_dec *lock)
|
|
{
|
|
ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;
|
|
bool r;
|
|
|
|
for (;;) {
|
|
ck_pr_dec_uint_zero(&lock->value, &r);
|
|
if (r == true)
|
|
break;
|
|
|
|
ck_backoff_eb(&backoff);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_dec_unlock(struct ck_spinlock_dec *lock)
|
|
{
|
|
|
|
ck_pr_fence_memory();
|
|
|
|
/* Unconditionally set lock value to 1 so someone can decrement lock to 0. */
|
|
ck_pr_store_uint(&lock->value, 1);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_DEC */
|
|
|
|
#ifndef CK_F_SPINLOCK_TICKET
|
|
#define CK_F_SPINLOCK_TICKET
|
|
/*
|
|
* MESI benefits from cacheline padding between next and current. This avoids
|
|
* invalidation of current from the cache due to incoming lock requests.
|
|
*/
|
|
struct ck_spinlock_ticket {
|
|
unsigned int next;
|
|
unsigned int position;
|
|
};
|
|
typedef struct ck_spinlock_ticket ck_spinlock_ticket_t;
|
|
|
|
#define CK_SPINLOCK_TICKET_INITIALIZER {.next = 0, .position = 0}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_ticket_init(struct ck_spinlock_ticket *ticket)
|
|
{
|
|
|
|
ticket->next = 0;
|
|
ticket->position = 0;
|
|
ck_pr_fence_store();
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket)
|
|
{
|
|
unsigned int request;
|
|
|
|
/* Get our ticket number and set next ticket number. */
|
|
request = ck_pr_faa_uint(&ticket->next, 1);
|
|
|
|
/* Busy-wait until our ticket number is current. */
|
|
while (ck_pr_load_uint(&ticket->position) != request)
|
|
ck_pr_stall();
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_ticket_lock_pb(struct ck_spinlock_ticket *ticket)
|
|
{
|
|
ck_backoff_t backoff;
|
|
unsigned int request, position;
|
|
|
|
request = ck_pr_faa_uint(&ticket->next, 1);
|
|
|
|
for (;;) {
|
|
position = ck_pr_load_uint(&ticket->position);
|
|
if (position == request)
|
|
break;
|
|
|
|
/* Overflow is handled fine, assuming 2s complement. */
|
|
backoff = (request - position);
|
|
backoff *= 64;
|
|
|
|
/*
|
|
* Ideally, back-off from generating cache traffic for at least
|
|
* the amount of time necessary for the number of pending lock
|
|
* acquisition and relinquish operations (assuming an empty
|
|
* critical section).
|
|
*/
|
|
ck_backoff_eb(&backoff);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_ticket_unlock(struct ck_spinlock_ticket *ticket)
|
|
{
|
|
unsigned int update;
|
|
|
|
ck_pr_fence_memory();
|
|
|
|
/*
|
|
* Update current ticket value so next lock request can proceed.
|
|
* Overflow behavior is assumed to be roll-over, in which case,
|
|
* it is only an issue if there are 2^32 pending lock requests.
|
|
*/
|
|
update = ck_pr_load_uint(&ticket->position);
|
|
ck_pr_store_uint(&ticket->position, ++update);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_TICKET */
|
|
|
|
#ifndef CK_F_SPINLOCK_MCS
|
|
#define CK_F_SPINLOCK_MCS
|
|
|
|
struct ck_spinlock_mcs {
|
|
unsigned int locked;
|
|
struct ck_spinlock_mcs *next;
|
|
};
|
|
typedef struct ck_spinlock_mcs * ck_spinlock_mcs_t;
|
|
typedef struct ck_spinlock_mcs ck_spinlock_mcs_context_t;
|
|
|
|
#define CK_SPINLOCK_MCS_INITIALIZER (NULL)
|
|
#define CK_SPINLOCK_MCS_CONTEXT_INITIALIZER {false, NULL}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_mcs_context_init(struct ck_spinlock_mcs *queue)
|
|
{
|
|
|
|
ck_pr_store_uint(&queue->locked, false);
|
|
ck_pr_store_ptr(&queue->next, NULL);
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_mcs_trylock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
|
|
{
|
|
|
|
ck_pr_store_uint(&node->locked, true);
|
|
ck_pr_store_ptr(&node->next, NULL);
|
|
ck_pr_fence_store();
|
|
|
|
return ck_pr_cas_ptr(queue, NULL, node);
|
|
}
|
|
|
|
CK_CC_INLINE static bool
|
|
ck_spinlock_mcs_locked(struct ck_spinlock_mcs **queue)
|
|
{
|
|
|
|
return ck_pr_load_ptr(queue) != NULL;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_mcs_lock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
|
|
{
|
|
struct ck_spinlock_mcs *previous;
|
|
|
|
/*
|
|
* In the case that there is a successor, let them know they must wait
|
|
* for us to unlock.
|
|
*/
|
|
ck_pr_store_uint(&node->locked, true);
|
|
ck_pr_store_ptr(&node->next, NULL);
|
|
ck_pr_fence_store();
|
|
|
|
/*
|
|
* Swap current tail with current lock request. If the swap operation
|
|
* returns NULL, it means the queue was empty. If the queue was empty,
|
|
* then the operation is complete.
|
|
*/
|
|
previous = ck_pr_fas_ptr(queue, node);
|
|
if (previous == NULL)
|
|
return;
|
|
|
|
/* Let the previous lock holder know that we are waiting on them. */
|
|
ck_pr_store_ptr(&previous->next, node);
|
|
while (ck_pr_load_uint(&node->locked) == true)
|
|
ck_pr_stall();
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_mcs_unlock(struct ck_spinlock_mcs **queue, struct ck_spinlock_mcs *node)
|
|
{
|
|
struct ck_spinlock_mcs *next;
|
|
|
|
ck_pr_fence_load();
|
|
next = ck_pr_load_ptr(&node->next);
|
|
if (next == NULL) {
|
|
/*
|
|
* If there is no request following us then it is a possibilty
|
|
* that we are the current tail. In this case, we may just
|
|
* mark the spinlock queue as empty.
|
|
*/
|
|
if (ck_pr_load_ptr(queue) == node &&
|
|
ck_pr_cas_ptr(queue, node, NULL) == true)
|
|
return;
|
|
|
|
/*
|
|
* If the node is not the current tail then a lock operation is
|
|
* in-progress. In this case, busy-wait until the queue is in
|
|
* a consistent state to wake up the incoming lock request.
|
|
*/
|
|
for (;;) {
|
|
next = ck_pr_load_ptr(&node->next);
|
|
if (next != NULL)
|
|
break;
|
|
|
|
ck_pr_stall();
|
|
}
|
|
}
|
|
|
|
/* Allow the next lock operation to complete. */
|
|
ck_pr_store_uint(&next->locked, false);
|
|
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_MCS */
|
|
|
|
#ifndef CK_F_SPINLOCK_CLH
|
|
#define CK_F_SPINLOCK_CLH
|
|
|
|
struct ck_spinlock_clh {
|
|
unsigned int wait;
|
|
struct ck_spinlock_clh_thread *previous;
|
|
};
|
|
typedef struct ck_spinlock_clh ck_spinlock_clh_t;
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_clh_init(struct ck_spinlock_clh **lock, struct ck_spinlock_clh *unowned)
|
|
{
|
|
|
|
ck_pr_store_ptr(&unowned->previous, NULL);
|
|
ck_pr_store_uint(&unowned->wait, false);
|
|
ck_pr_store_ptr(lock, unowned);
|
|
ck_pr_fence_store();
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_clh_lock(struct ck_spinlock_clh **queue, struct ck_spinlock_clh *thread)
|
|
{
|
|
struct ck_spinlock_clh *previous;
|
|
|
|
ck_pr_store_uint(&thread->wait, true);
|
|
|
|
/* Mark current request as last request. Save reference to previous request. */
|
|
previous = ck_pr_fas_ptr(queue, thread);
|
|
ck_pr_store_ptr(&thread->previous, previous);
|
|
|
|
/* Wait until previous thread is done with lock. */
|
|
while (ck_pr_load_uint(&previous->wait) == true)
|
|
ck_pr_stall();
|
|
|
|
return;
|
|
}
|
|
|
|
CK_CC_INLINE static void
|
|
ck_spinlock_clh_unlock(struct ck_spinlock_clh **thread)
|
|
{
|
|
struct ck_spinlock_clh *previous;
|
|
|
|
ck_pr_fence_memory();
|
|
|
|
/*
|
|
* If there are waiters, they are spinning on the current node wait
|
|
* flag. The flag is cleared so that the successor may complete an
|
|
* acquisition. If the caller is pre-empted then the predecessor field
|
|
* may be updated by a successor's lock operation. In order to avoid
|
|
* this, save a copy of the predecessor before setting the flag.
|
|
*/
|
|
previous = ck_pr_load_ptr(&(*thread)->previous);
|
|
ck_pr_store_uint(&(*thread)->wait, false);
|
|
|
|
/*
|
|
* Predecessor is guaranteed not to be spinning on previous request,
|
|
* so update caller to use previous structure. This allows successor
|
|
* all the time in the world to successfully read updated wait flag.
|
|
*/
|
|
ck_pr_store_ptr(thread, previous);
|
|
return;
|
|
}
|
|
#endif /* CK_F_SPINLOCK_CLH */
|
|
|
|
#endif /* _CK_SPINLOCK_H */
|