You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ck/include/gcc/x86_64/ck_pr.h

614 lines
16 KiB

/*
* Copyright 2009-2015 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef CK_PR_X86_64_H
#define CK_PR_X86_64_H
#ifndef CK_PR_H
#error Do not include this file directly, use ck_pr.h
#endif
#include <ck_cc.h>
#include <ck_md.h>
#include <ck_stdint.h>
/*
* The following represent supported atomic operations.
* These operations may be emulated.
*/
#include "ck_f_pr.h"
/*
* Support for TSX extensions.
*/
#ifdef CK_MD_RTM_ENABLE
#include "ck_pr_rtm.h"
#endif
/* Minimum requirements for the CK_PR interface are met. */
#define CK_F_PR
#ifdef CK_MD_UMP
#define CK_PR_LOCK_PREFIX
#else
#define CK_PR_LOCK_PREFIX "lock "
#endif
/*
* Prevent speculative execution in busy-wait loops (P4 <=) or "predefined
* delay".
*/
CK_CC_INLINE static void
ck_pr_stall(void)
{
__asm__ __volatile__("pause" ::: "memory");
return;
}
#define CK_PR_FENCE(T, I) \
CK_CC_INLINE static void \
ck_pr_fence_strict_##T(void) \
{ \
__asm__ __volatile__(I ::: "memory"); \
}
/* Atomic operations are always serializing. */
CK_PR_FENCE(atomic, "")
CK_PR_FENCE(atomic_store, "")
CK_PR_FENCE(atomic_load, "")
CK_PR_FENCE(store_atomic, "")
CK_PR_FENCE(load_atomic, "")
/* Traditional fence interface. */
CK_PR_FENCE(load, "lfence")
CK_PR_FENCE(load_store, "mfence")
CK_PR_FENCE(store, "sfence")
CK_PR_FENCE(store_load, "mfence")
CK_PR_FENCE(memory, "mfence")
/* Below are stdatomic-style fences. */
/*
* Provides load-store and store-store ordering. However, Intel specifies that
* the WC memory model is relaxed. It is likely an sfence *is* sufficient (in
* particular, stores are not re-ordered with respect to prior loads and it is
* really just the stores that are subject to re-ordering). However, we take
* the conservative route as the manuals are too ambiguous for my taste.
*/
CK_PR_FENCE(release, "mfence")
/*
* Provides load-load and load-store ordering. The lfence instruction ensures
* all prior load operations are complete before any subsequent instructions
* actually begin execution. However, the manual also ends up going to describe
* WC memory as a relaxed model.
*/
CK_PR_FENCE(acquire, "mfence")
CK_PR_FENCE(acqrel, "mfence")
CK_PR_FENCE(lock, "mfence")
CK_PR_FENCE(unlock, "mfence")
#undef CK_PR_FENCE
/*
* Read for ownership. Older compilers will generate the 32-bit
* 3DNow! variant which is binary compatible with x86-64 variant
* of prefetchw.
*/
#ifndef CK_F_PR_RFO
#define CK_F_PR_RFO
CK_CC_INLINE static void
ck_pr_rfo(const void *m)
{
__asm__ __volatile__("prefetchw (%0)"
:
: "r" (m)
: "memory");
return;
}
#endif /* CK_F_PR_RFO */
/*
* Atomic fetch-and-store operations.
*/
#define CK_PR_FAS(S, M, T, C, I) \
CK_CC_INLINE static T \
ck_pr_fas_##S(M *target, T v) \
{ \
__asm__ __volatile__(I " %0, %1" \
: "+m" (*(C *)target), \
"+q" (v) \
: \
: "memory"); \
return v; \
}
CK_PR_FAS(ptr, void, void *, char, "xchgq")
#define CK_PR_FAS_S(S, T, I) CK_PR_FAS(S, T, T, T, I)
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_FAS_S(double, double, "xchgq")
#endif
CK_PR_FAS_S(char, char, "xchgb")
CK_PR_FAS_S(uint, unsigned int, "xchgl")
CK_PR_FAS_S(int, int, "xchgl")
CK_PR_FAS_S(64, uint64_t, "xchgq")
CK_PR_FAS_S(32, uint32_t, "xchgl")
CK_PR_FAS_S(16, uint16_t, "xchgw")
CK_PR_FAS_S(8, uint8_t, "xchgb")
#undef CK_PR_FAS_S
#undef CK_PR_FAS
/*
* Atomic load-from-memory operations.
*/
#define CK_PR_LOAD(S, M, T, C, I) \
CK_CC_INLINE static T \
ck_pr_md_load_##S(const M *target) \
{ \
T r; \
__asm__ __volatile__(I " %1, %0" \
: "=q" (r) \
: "m" (*(const C *)target) \
: "memory"); \
return (r); \
}
CK_PR_LOAD(ptr, void, void *, char, "movq")
#define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I)
CK_PR_LOAD_S(char, char, "movb")
CK_PR_LOAD_S(uint, unsigned int, "movl")
CK_PR_LOAD_S(int, int, "movl")
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_LOAD_S(double, double, "movq")
#endif
CK_PR_LOAD_S(64, uint64_t, "movq")
CK_PR_LOAD_S(32, uint32_t, "movl")
CK_PR_LOAD_S(16, uint16_t, "movw")
CK_PR_LOAD_S(8, uint8_t, "movb")
#undef CK_PR_LOAD_S
#undef CK_PR_LOAD
CK_CC_INLINE static void
ck_pr_load_64_2(const uint64_t target[2], uint64_t v[2])
{
__asm__ __volatile__("movq %%rdx, %%rcx;"
"movq %%rax, %%rbx;"
CK_PR_LOCK_PREFIX "cmpxchg16b %2;"
: "=a" (v[0]),
"=d" (v[1])
: "m" (*(const uint64_t *)target)
: "rbx", "rcx", "memory", "cc");
return;
}
CK_CC_INLINE static void
ck_pr_load_ptr_2(const void *t, void *v)
{
ck_pr_load_64_2(CK_CPP_CAST(const uint64_t *, t),
CK_CPP_CAST(uint64_t *, v));
return;
}
#define CK_PR_LOAD_2(S, W, T) \
CK_CC_INLINE static void \
ck_pr_md_load_##S##_##W(const T t[2], T v[2]) \
{ \
ck_pr_load_64_2((const uint64_t *)(const void *)t, \
(uint64_t *)(void *)v); \
return; \
}
CK_PR_LOAD_2(char, 16, char)
CK_PR_LOAD_2(int, 4, int)
CK_PR_LOAD_2(uint, 4, unsigned int)
CK_PR_LOAD_2(32, 4, uint32_t)
CK_PR_LOAD_2(16, 8, uint16_t)
CK_PR_LOAD_2(8, 16, uint8_t)
#undef CK_PR_LOAD_2
/*
* Atomic store-to-memory operations.
*/
#define CK_PR_STORE_IMM(S, M, T, C, I, K) \
CK_CC_INLINE static void \
ck_pr_md_store_##S(M *target, T v) \
{ \
__asm__ __volatile__(I " %1, %0" \
: "=m" (*(C *)target) \
: K "q" (v) \
: "memory"); \
return; \
}
#define CK_PR_STORE(S, M, T, C, I) \
CK_CC_INLINE static void \
ck_pr_md_store_##S(M *target, T v) \
{ \
__asm__ __volatile__(I " %1, %0" \
: "=m" (*(C *)target) \
: "q" (v) \
: "memory"); \
return; \
}
CK_PR_STORE_IMM(ptr, void, const void *, char, "movq", CK_CC_IMM_U32)
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_STORE(double, double, double, double, "movq")
#endif
#define CK_PR_STORE_S(S, T, I, K) CK_PR_STORE_IMM(S, T, T, T, I, K)
CK_PR_STORE_S(char, char, "movb", CK_CC_IMM_S32)
CK_PR_STORE_S(int, int, "movl", CK_CC_IMM_S32)
CK_PR_STORE_S(uint, unsigned int, "movl", CK_CC_IMM_U32)
CK_PR_STORE_S(64, uint64_t, "movq", CK_CC_IMM_U32)
CK_PR_STORE_S(32, uint32_t, "movl", CK_CC_IMM_U32)
CK_PR_STORE_S(16, uint16_t, "movw", CK_CC_IMM_U32)
CK_PR_STORE_S(8, uint8_t, "movb", CK_CC_IMM_U32)
#undef CK_PR_STORE_S
#undef CK_PR_STORE_IMM
#undef CK_PR_STORE
/*
* Atomic fetch-and-add operations.
*/
#define CK_PR_FAA(S, M, T, C, I) \
CK_CC_INLINE static T \
ck_pr_faa_##S(M *target, T d) \
{ \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \
: "+m" (*(C *)target), \
"+q" (d) \
: \
: "memory", "cc"); \
return (d); \
}
CK_PR_FAA(ptr, void, uintptr_t, char, "xaddq")
#define CK_PR_FAA_S(S, T, I) CK_PR_FAA(S, T, T, T, I)
CK_PR_FAA_S(char, char, "xaddb")
CK_PR_FAA_S(uint, unsigned int, "xaddl")
CK_PR_FAA_S(int, int, "xaddl")
CK_PR_FAA_S(64, uint64_t, "xaddq")
CK_PR_FAA_S(32, uint32_t, "xaddl")
CK_PR_FAA_S(16, uint16_t, "xaddw")
CK_PR_FAA_S(8, uint8_t, "xaddb")
#undef CK_PR_FAA_S
#undef CK_PR_FAA
/*
* Atomic store-only unary operations.
*/
#define CK_PR_UNARY(K, S, T, C, I) \
CK_PR_UNARY_R(K, S, T, C, I) \
CK_PR_UNARY_V(K, S, T, C, I)
#define CK_PR_UNARY_R(K, S, T, C, I) \
CK_CC_INLINE static void \
ck_pr_##K##_##S(T *target) \
{ \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0" \
: "+m" (*(C *)target) \
: \
: "memory", "cc"); \
return; \
}
#define CK_PR_UNARY_V(K, S, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_##K##_##S##_is_zero(T *target) \
{ \
bool ret; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1" \
: "+m" (*(C *)target), \
"=rm" (ret) \
: \
: "memory", "cc"); \
return ret; \
}
#define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I)
#define CK_PR_GENERATE(K) \
CK_PR_UNARY(K, ptr, void, char, #K "q") \
CK_PR_UNARY_S(K, char, char, #K "b") \
CK_PR_UNARY_S(K, int, int, #K "l") \
CK_PR_UNARY_S(K, uint, unsigned int, #K "l") \
CK_PR_UNARY_S(K, 64, uint64_t, #K "q") \
CK_PR_UNARY_S(K, 32, uint32_t, #K "l") \
CK_PR_UNARY_S(K, 16, uint16_t, #K "w") \
CK_PR_UNARY_S(K, 8, uint8_t, #K "b")
CK_PR_GENERATE(inc)
CK_PR_GENERATE(dec)
CK_PR_GENERATE(neg)
/* not does not affect condition flags. */
#undef CK_PR_UNARY_V
#define CK_PR_UNARY_V(a, b, c, d, e)
CK_PR_GENERATE(not)
#undef CK_PR_GENERATE
#undef CK_PR_UNARY_S
#undef CK_PR_UNARY_V
#undef CK_PR_UNARY_R
#undef CK_PR_UNARY
/*
* Atomic store-only binary operations.
*/
#define CK_PR_BINARY(K, S, M, T, C, I, O) \
CK_CC_INLINE static void \
ck_pr_##K##_##S(M *target, T d) \
{ \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \
: "+m" (*(C *)target) \
: O "q" (d) \
: "memory", "cc"); \
return; \
}
#define CK_PR_BINARY_S(K, S, T, I, O) CK_PR_BINARY(K, S, T, T, T, I, O)
#define CK_PR_GENERATE(K) \
CK_PR_BINARY(K, ptr, void, uintptr_t, char, #K "q", CK_CC_IMM_U32) \
CK_PR_BINARY_S(K, char, char, #K "b", CK_CC_IMM_S32) \
CK_PR_BINARY_S(K, int, int, #K "l", CK_CC_IMM_S32) \
CK_PR_BINARY_S(K, uint, unsigned int, #K "l", CK_CC_IMM_U32) \
CK_PR_BINARY_S(K, 64, uint64_t, #K "q", CK_CC_IMM_U32) \
CK_PR_BINARY_S(K, 32, uint32_t, #K "l", CK_CC_IMM_U32) \
CK_PR_BINARY_S(K, 16, uint16_t, #K "w", CK_CC_IMM_U32) \
CK_PR_BINARY_S(K, 8, uint8_t, #K "b", CK_CC_IMM_U32)
CK_PR_GENERATE(add)
CK_PR_GENERATE(sub)
CK_PR_GENERATE(and)
CK_PR_GENERATE(or)
CK_PR_GENERATE(xor)
#undef CK_PR_GENERATE
#undef CK_PR_BINARY_S
#undef CK_PR_BINARY
/*
* Atomic compare and swap, with a variant that sets *v to the old value of target.
*/
#ifdef __GCC_ASM_FLAG_OUTPUTS__
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
/* RAX is clobbered by cmpxchg. */ \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
: "+m" (*(C *)target), \
"=@ccz" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#else
#define CK_PR_CAS(S, M, T, C, I) \
CK_CC_INLINE static bool \
ck_pr_cas_##S(M *target, T compare, T set) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %2, %0; setz %1" \
: "+m" (*(C *)target), \
"=a" (z) \
: "q" (set), \
"a" (compare) \
: "memory", "cc"); \
return z; \
} \
\
CK_CC_INLINE static bool \
ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \
{ \
bool z; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \
"setz %1;" \
: "+m" (*(C *)target), \
"=q" (z), \
"+a" (compare) \
: "q" (set) \
: "memory", "cc"); \
*(T *)v = compare; \
return z; \
}
#endif
CK_PR_CAS(ptr, void, void *, char, "cmpxchgq")
#define CK_PR_CAS_S(S, T, I) CK_PR_CAS(S, T, T, T, I)
CK_PR_CAS_S(char, char, "cmpxchgb")
CK_PR_CAS_S(int, int, "cmpxchgl")
CK_PR_CAS_S(uint, unsigned int, "cmpxchgl")
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_CAS_S(double, double, "cmpxchgq")
#endif
CK_PR_CAS_S(64, uint64_t, "cmpxchgq")
CK_PR_CAS_S(32, uint32_t, "cmpxchgl")
CK_PR_CAS_S(16, uint16_t, "cmpxchgw")
CK_PR_CAS_S(8, uint8_t, "cmpxchgb")
#undef CK_PR_CAS_S
#undef CK_PR_CAS
/*
* Contrary to C-interface, alignment requirements are that of uint64_t[2].
*/
CK_CC_INLINE static bool
ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2])
{
bool z;
__asm__ __volatile__("movq 0(%4), %%rax;"
"movq 8(%4), %%rdx;"
CK_PR_LOCK_PREFIX "cmpxchg16b %0; setz %1"
: "+m" (*target),
"=q" (z)
: "b" (set[0]),
"c" (set[1]),
"q" (compare)
: "memory", "cc", "%rax", "%rdx");
return z;
}
CK_CC_INLINE static bool
ck_pr_cas_ptr_2(void *t, void *c, void *s)
{
return ck_pr_cas_64_2(CK_CPP_CAST(uint64_t *, t),
CK_CPP_CAST(uint64_t *, c),
CK_CPP_CAST(uint64_t *, s));
}
CK_CC_INLINE static bool
ck_pr_cas_64_2_value(uint64_t target[2],
uint64_t compare[2],
uint64_t set[2],
uint64_t v[2])
{
bool z;
__asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg16b %0;"
"setz %3"
: "+m" (*target),
"=a" (v[0]),
"=d" (v[1]),
"=q" (z)
: "a" (compare[0]),
"d" (compare[1]),
"b" (set[0]),
"c" (set[1])
: "memory", "cc");
return z;
}
CK_CC_INLINE static bool
ck_pr_cas_ptr_2_value(void *t, void *c, void *s, void *v)
{
return ck_pr_cas_64_2_value(CK_CPP_CAST(uint64_t *,t),
CK_CPP_CAST(uint64_t *,c),
CK_CPP_CAST(uint64_t *,s),
CK_CPP_CAST(uint64_t *,v));
}
#define CK_PR_CAS_V(S, W, T) \
CK_CC_INLINE static bool \
ck_pr_cas_##S##_##W(T t[W], T c[W], T s[W]) \
{ \
return ck_pr_cas_64_2((uint64_t *)(void *)t, \
(uint64_t *)(void *)c, \
(uint64_t *)(void *)s); \
} \
CK_CC_INLINE static bool \
ck_pr_cas_##S##_##W##_value(T *t, T c[W], T s[W], T *v) \
{ \
return ck_pr_cas_64_2_value((uint64_t *)(void *)t, \
(uint64_t *)(void *)c, \
(uint64_t *)(void *)s, \
(uint64_t *)(void *)v); \
}
#ifndef CK_PR_DISABLE_DOUBLE
CK_PR_CAS_V(double, 2, double)
#endif
CK_PR_CAS_V(char, 16, char)
CK_PR_CAS_V(int, 4, int)
CK_PR_CAS_V(uint, 4, unsigned int)
CK_PR_CAS_V(32, 4, uint32_t)
CK_PR_CAS_V(16, 8, uint16_t)
CK_PR_CAS_V(8, 16, uint8_t)
#undef CK_PR_CAS_V
/*
* Atomic bit test operations.
*/
#define CK_PR_BT(K, S, T, P, C, I) \
CK_CC_INLINE static bool \
ck_pr_##K##_##S(T *target, unsigned int b) \
{ \
bool c; \
__asm__ __volatile__(CK_PR_LOCK_PREFIX I "; setc %1" \
: "+m" (*(C *)target), \
"=q" (c) \
: "q" ((P)b) \
: "memory", "cc"); \
return c; \
}
#define CK_PR_BT_S(K, S, T, I) CK_PR_BT(K, S, T, T, T, I)
#define CK_PR_GENERATE(K) \
CK_PR_BT(K, ptr, void, uint64_t, char, #K "q %2, %0") \
CK_PR_BT_S(K, uint, unsigned int, #K "l %2, %0") \
CK_PR_BT_S(K, int, int, #K "l %2, %0") \
CK_PR_BT_S(K, 64, uint64_t, #K "q %2, %0") \
CK_PR_BT_S(K, 32, uint32_t, #K "l %2, %0") \
CK_PR_BT_S(K, 16, uint16_t, #K "w %w2, %0")
CK_PR_GENERATE(btc)
CK_PR_GENERATE(bts)
CK_PR_GENERATE(btr)
#undef CK_PR_GENERATE
#undef CK_PR_BT
#endif /* CK_PR_X86_64_H */