/* * Copyright 2012-2015 Samy Al Bahra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)queue.h 8.5 (Berkeley) 8/20/94 * $FreeBSD: release/9.0.0/sys/sys/queue.h 221843 2011-05-13 15:49:23Z mdf $ */ #ifndef CK_QUEUE_H #define CK_QUEUE_H #include /* * This file defines three types of data structures: singly-linked lists, * singly-linked tail queues and lists. * * A singly-linked list is headed by a single forward pointer. The elements * are singly linked for minimum space and pointer manipulation overhead at * the expense of O(n) removal for arbitrary elements. New elements can be * added to the list after an existing element or at the head of the list. * Elements being removed from the head of the list should use the explicit * macro for this purpose for optimum efficiency. A singly-linked list may * only be traversed in the forward direction. Singly-linked lists are ideal * for applications with large datasets and few or no removals or for * implementing a LIFO queue. * * A singly-linked tail queue is headed by a pair of pointers, one to the * head of the list and the other to the tail of the list. The elements are * singly linked for minimum space and pointer manipulation overhead at the * expense of O(n) removal for arbitrary elements. New elements can be added * to the list after an existing element, at the head of the list, or at the * end of the list. Elements being removed from the head of the tail queue * should use the explicit macro for this purpose for optimum efficiency. * A singly-linked tail queue may only be traversed in the forward direction. * Singly-linked tail queues are ideal for applications with large datasets * and few or no removals or for implementing a FIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * It is safe to use _FOREACH/_FOREACH_SAFE in the presence of concurrent * modifications to the list. Writers to these lists must, on the other hand, * implement writer-side synchronization. The _SWAP operations are not atomic. * This facility is currently unsupported on architectures such as the Alpha * which require load-depend memory fences. * * CK_SLIST CK_LIST CK_STAILQ * _HEAD + + + * _HEAD_INITIALIZER + + + * _ENTRY + + + * _INIT + + + * _EMPTY + + + * _FIRST + + + * _NEXT + + + * _FOREACH + + + * _FOREACH_SAFE + + + * _INSERT_HEAD + + + * _INSERT_BEFORE - + - * _INSERT_AFTER + + + * _INSERT_TAIL - - + * _REMOVE_AFTER + - + * _REMOVE_HEAD + - + * _REMOVE + + + * _SWAP + + + * _MOVE + + + */ /* * Singly-linked List declarations. */ #define CK_SLIST_HEAD(name, type) \ struct name { \ struct type *slh_first; /* first element */ \ } #define CK_SLIST_HEAD_INITIALIZER(head) \ { NULL } #define CK_SLIST_ENTRY(type) \ struct { \ struct type *sle_next; /* next element */ \ } /* * Singly-linked List functions. */ #define CK_SLIST_EMPTY(head) \ (ck_pr_load_ptr(&(head)->slh_first) == NULL) #define CK_SLIST_FIRST(head) \ (ck_pr_load_ptr(&(head)->slh_first)) #define CK_SLIST_NEXT(elm, field) \ ck_pr_load_ptr(&((elm)->field.sle_next)) #define CK_SLIST_FOREACH(var, head, field) \ for ((var) = CK_SLIST_FIRST((head)); \ (var) && (ck_pr_fence_load(), 1); \ (var) = CK_SLIST_NEXT((var), field)) #define CK_SLIST_FOREACH_SAFE(var, head, field, tvar) \ for ((var) = CK_SLIST_FIRST(head); \ (var) && (ck_pr_fence_load(), (tvar) = CK_SLIST_NEXT(var, field), 1);\ (var) = (tvar)) #define CK_SLIST_FOREACH_PREVPTR(var, varp, head, field) \ for ((varp) = &(head)->slh_first; \ ((var) = ck_pr_load_ptr(varp)) != NULL && (ck_pr_fence_load(), 1); \ (varp) = &(var)->field.sle_next) #define CK_SLIST_INIT(head) do { \ ck_pr_store_ptr(&(head)->slh_first, NULL); \ ck_pr_fence_store(); \ } while (0) #define CK_SLIST_INSERT_AFTER(a, b, field) do { \ (b)->field.sle_next = (a)->field.sle_next; \ ck_pr_fence_store(); \ ck_pr_store_ptr(&(a)->field.sle_next, b); \ } while (0) #define CK_SLIST_INSERT_HEAD(head, elm, field) do { \ (elm)->field.sle_next = (head)->slh_first; \ ck_pr_fence_store(); \ ck_pr_store_ptr(&(head)->slh_first, elm); \ } while (0) #define CK_SLIST_REMOVE_AFTER(elm, field) do { \ ck_pr_store_ptr(&(elm)->field.sle_next, \ (elm)->field.sle_next->field.sle_next); \ } while (0) #define CK_SLIST_REMOVE(head, elm, type, field) do { \ if ((head)->slh_first == (elm)) { \ CK_SLIST_REMOVE_HEAD((head), field); \ } else { \ struct type *curelm = (head)->slh_first; \ while (curelm->field.sle_next != (elm)) \ curelm = curelm->field.sle_next; \ CK_SLIST_REMOVE_AFTER(curelm, field); \ } \ } while (0) #define CK_SLIST_REMOVE_HEAD(head, field) do { \ ck_pr_store_ptr(&(head)->slh_first, \ (head)->slh_first->field.sle_next); \ } while (0) #define CK_SLIST_MOVE(head1, head2, field) do { \ ck_pr_store_ptr(&(head1)->slh_first, (head2)->slh_first); \ } while (0) /* * This operation is not applied atomically. */ #define CK_SLIST_SWAP(a, b, type) do { \ struct type *swap_first = (a)->slh_first; \ (a)->slh_first = (b)->slh_first; \ (b)->slh_first = swap_first; \ } while (0) /* * Singly-linked Tail queue declarations. */ #define CK_STAILQ_HEAD(name, type) \ struct name { \ struct type *stqh_first;/* first element */ \ struct type **stqh_last;/* addr of last next element */ \ } #define CK_STAILQ_HEAD_INITIALIZER(head) \ { NULL, &(head).stqh_first } #define CK_STAILQ_ENTRY(type) \ struct { \ struct type *stqe_next; /* next element */ \ } /* * Singly-linked Tail queue functions. */ #define CK_STAILQ_CONCAT(head1, head2) do { \ if ((head2)->stqh_first != NULL) { \ ck_pr_store_ptr((head1)->stqh_last, (head2)->stqh_first); \ ck_pr_fence_store(); \ (head1)->stqh_last = (head2)->stqh_last; \ CK_STAILQ_INIT((head2)); \ } \ } while (0) #define CK_STAILQ_EMPTY(head) (ck_pr_load_ptr(&(head)->stqh_first) == NULL) #define CK_STAILQ_FIRST(head) (ck_pr_load_ptr(&(head)->stqh_first)) #define CK_STAILQ_FOREACH(var, head, field) \ for((var) = CK_STAILQ_FIRST((head)); \ (var) && (ck_pr_fence_load(), 1); \ (var) = CK_STAILQ_NEXT((var), field)) #define CK_STAILQ_FOREACH_SAFE(var, head, field, tvar) \ for ((var) = CK_STAILQ_FIRST((head)); \ (var) && (ck_pr_fence_load(), (tvar) = \ CK_STAILQ_NEXT((var), field), 1); \ (var) = (tvar)) #define CK_STAILQ_INIT(head) do { \ ck_pr_store_ptr(&(head)->stqh_first, NULL); \ ck_pr_fence_store(); \ (head)->stqh_last = &(head)->stqh_first; \ } while (0) #define CK_STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ (elm)->field.stqe_next = (tqelm)->field.stqe_next; \ ck_pr_fence_store(); \ ck_pr_store_ptr(&(tqelm)->field.stqe_next, elm); \ if ((elm)->field.stqe_next == NULL) \ (head)->stqh_last = &(elm)->field.stqe_next; \ } while (0) #define CK_STAILQ_INSERT_HEAD(head, elm, field) do { \ (elm)->field.stqe_next = (head)->stqh_first; \ ck_pr_fence_store(); \ ck_pr_store_ptr(&(head)->stqh_first, elm); \ if ((elm)->field.stqe_next == NULL) \ (head)->stqh_last = &(elm)->field.stqe_next; \ } while (0) #define CK_STAILQ_INSERT_TAIL(head, elm, field) do { \ (elm)->field.stqe_next = NULL; \ ck_pr_fence_store(); \ ck_pr_store_ptr((head)->stqh_last, (elm)); \ (head)->stqh_last = &(elm)->field.stqe_next; \ } while (0) #define CK_STAILQ_NEXT(elm, field) \ (ck_pr_load_ptr(&(elm)->field.stqe_next)) #define CK_STAILQ_REMOVE(head, elm, type, field) do { \ if ((head)->stqh_first == (elm)) { \ CK_STAILQ_REMOVE_HEAD((head), field); \ } else { \ struct type *curelm = (head)->stqh_first; \ while (curelm->field.stqe_next != (elm)) \ curelm = curelm->field.stqe_next; \ CK_STAILQ_REMOVE_AFTER(head, curelm, field); \ } \ } while (0) #define CK_STAILQ_REMOVE_AFTER(head, elm, field) do { \ ck_pr_store_ptr(&(elm)->field.stqe_next, \ (elm)->field.stqe_next->field.stqe_next); \ if ((elm)->field.stqe_next == NULL) \ (head)->stqh_last = &(elm)->field.stqe_next; \ } while (0) #define CK_STAILQ_REMOVE_HEAD(head, field) do { \ ck_pr_store_ptr(&(head)->stqh_first, \ (head)->stqh_first->field.stqe_next); \ if ((head)->stqh_first == NULL) \ (head)->stqh_last = &(head)->stqh_first; \ } while (0) #define CK_STAILQ_MOVE(head1, head2, field) do { \ ck_pr_store_ptr(&(head1)->stqh_first, (head2)->stqh_first); \ (head1)->stqh_last = (head2)->stqh_last; \ if ((head2)->stqh_last == &(head2)->stqh_first) \ (head1)->stqh_last = &(head1)->stqh_first; \ } while (0) /* * This operation is not applied atomically. */ #define CK_STAILQ_SWAP(head1, head2, type) do { \ struct type *swap_first = CK_STAILQ_FIRST(head1); \ struct type **swap_last = (head1)->stqh_last; \ CK_STAILQ_FIRST(head1) = CK_STAILQ_FIRST(head2); \ (head1)->stqh_last = (head2)->stqh_last; \ CK_STAILQ_FIRST(head2) = swap_first; \ (head2)->stqh_last = swap_last; \ if (CK_STAILQ_EMPTY(head1)) \ (head1)->stqh_last = &(head1)->stqh_first; \ if (CK_STAILQ_EMPTY(head2)) \ (head2)->stqh_last = &(head2)->stqh_first; \ } while (0) /* * List declarations. */ #define CK_LIST_HEAD(name, type) \ struct name { \ struct type *lh_first; /* first element */ \ } #define CK_LIST_HEAD_INITIALIZER(head) \ { NULL } #define CK_LIST_ENTRY(type) \ struct { \ struct type *le_next; /* next element */ \ struct type **le_prev; /* address of previous next element */ \ } #define CK_LIST_FIRST(head) ck_pr_load_ptr(&(head)->lh_first) #define CK_LIST_EMPTY(head) (CK_LIST_FIRST(head) == NULL) #define CK_LIST_NEXT(elm, field) ck_pr_load_ptr(&(elm)->field.le_next) #define CK_LIST_FOREACH(var, head, field) \ for ((var) = CK_LIST_FIRST((head)); \ (var) && (ck_pr_fence_load(), 1); \ (var) = CK_LIST_NEXT((var), field)) #define CK_LIST_FOREACH_SAFE(var, head, field, tvar) \ for ((var) = CK_LIST_FIRST((head)); \ (var) && (ck_pr_fence_load(), (tvar) = CK_LIST_NEXT((var), field), 1);\ (var) = (tvar)) #define CK_LIST_INIT(head) do { \ ck_pr_store_ptr(&(head)->lh_first, NULL); \ ck_pr_fence_store(); \ } while (0) #define CK_LIST_INSERT_AFTER(listelm, elm, field) do { \ (elm)->field.le_next = (listelm)->field.le_next; \ (elm)->field.le_prev = &(listelm)->field.le_next; \ ck_pr_fence_store(); \ if ((listelm)->field.le_next != NULL) \ (listelm)->field.le_next->field.le_prev = &(elm)->field.le_next;\ ck_pr_store_ptr(&(listelm)->field.le_next, elm); \ } while (0) #define CK_LIST_INSERT_BEFORE(listelm, elm, field) do { \ (elm)->field.le_prev = (listelm)->field.le_prev; \ (elm)->field.le_next = (listelm); \ ck_pr_fence_store(); \ ck_pr_store_ptr((listelm)->field.le_prev, (elm)); \ (listelm)->field.le_prev = &(elm)->field.le_next; \ } while (0) #define CK_LIST_INSERT_HEAD(head, elm, field) do { \ (elm)->field.le_next = (head)->lh_first; \ ck_pr_fence_store(); \ if ((elm)->field.le_next != NULL) \ (head)->lh_first->field.le_prev = &(elm)->field.le_next; \ ck_pr_store_ptr(&(head)->lh_first, elm); \ (elm)->field.le_prev = &(head)->lh_first; \ } while (0) #define CK_LIST_REMOVE(elm, field) do { \ ck_pr_store_ptr((elm)->field.le_prev, (elm)->field.le_next); \ if ((elm)->field.le_next != NULL) \ (elm)->field.le_next->field.le_prev = (elm)->field.le_prev; \ } while (0) #define CK_LIST_MOVE(head1, head2, field) do { \ ck_pr_store_ptr(&(head1)->lh_first, (head2)->lh_first); \ if ((head1)->lh_first != NULL) \ (head1)->lh_first->field.le_prev = &(head1)->lh_first; \ } while (0) /* * This operation is not applied atomically. */ #define CK_LIST_SWAP(head1, head2, type, field) do { \ struct type *swap_tmp = (head1)->lh_first; \ (head1)->lh_first = (head2)->lh_first; \ (head2)->lh_first = swap_tmp; \ if ((swap_tmp = (head1)->lh_first) != NULL) \ swap_tmp->field.le_prev = &(head1)->lh_first; \ if ((swap_tmp = (head2)->lh_first) != NULL) \ swap_tmp->field.le_prev = &(head2)->lh_first; \ } while (0) #endif /* CK_QUEUE_H */