/* * Copyright 2012-2015 Samy Al Bahra. * Copyright 2012-2014 AppNexus, Inc. * Copyright 2014 Paul Khuong. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef CK_BITMAP_H #define CK_BITMAP_H #include #include #include #include #include #include #include #include #include #if !defined(CK_F_PR_LOAD_UINT) || !defined(CK_F_PR_STORE_UINT) || \ !defined(CK_F_PR_AND_UINT) || !defined(CK_F_PR_OR_UINT) || \ !defined(CK_F_CC_CTZ) #error "ck_bitmap is not supported on your platform." #endif #define CK_BITMAP_BLOCK (sizeof(unsigned int) * CHAR_BIT) #define CK_BITMAP_OFFSET(i) ((i) % CK_BITMAP_BLOCK) #define CK_BITMAP_BIT(i) (1U << ((i) % CK_BITMAP_BLOCK)) #define CK_BITMAP_PTR(x, i) ((x) + ((i) / CK_BITMAP_BLOCK)) #define CK_BITMAP_BLOCKS(n) (((n) + CK_BITMAP_BLOCK - 1) / CK_BITMAP_BLOCK) #define CK_BITMAP_INSTANCE(n_entries) \ union { \ struct { \ unsigned int n_bits; \ unsigned int map[CK_BITMAP_BLOCKS(n_entries)]; \ } content; \ struct ck_bitmap bitmap; \ } #define CK_BITMAP_ITERATOR_INIT(a, b) \ ck_bitmap_iterator_init((a), &(b)->bitmap) #define CK_BITMAP_INIT(a, b, c) \ ck_bitmap_init(&(a)->bitmap, (b), (c)) #define CK_BITMAP_NEXT(a, b, c) \ ck_bitmap_next(&(a)->bitmap, (b), (c)) #define CK_BITMAP_SET(a, b) \ ck_bitmap_set(&(a)->bitmap, (b)) #define CK_BITMAP_BTS(a, b) \ ck_bitmap_bts(&(a)->bitmap, (b)) #define CK_BITMAP_RESET(a, b) \ ck_bitmap_reset(&(a)->bitmap, (b)) #define CK_BITMAP_TEST(a, b) \ ck_bitmap_test(&(a)->bitmap, (b)) #define CK_BITMAP_UNION(a, b) \ ck_bitmap_union(&(a)->bitmap, &(b)->bitmap) #define CK_BITMAP_INTERSECTION(a, b) \ ck_bitmap_intersection(&(a)->bitmap, &(b)->bitmap) #define CK_BITMAP_INTERSECTION_NEGATE(a, b) \ ck_bitmap_intersection_negate(&(a)->bitmap, &(b)->bitmap) #define CK_BITMAP_CLEAR(a) \ ck_bitmap_clear(&(a)->bitmap) #define CK_BITMAP_EMPTY(a, b) \ ck_bitmap_empty(&(a)->bitmap, b) #define CK_BITMAP_FULL(a, b) \ ck_bitmap_full(&(a)->bitmap, b) #define CK_BITMAP_COUNT(a, b) \ ck_bitmap_count(&(a)->bitmap, b) #define CK_BITMAP_COUNT_INTERSECT(a, b, c) \ ck_bitmap_count_intersect(&(a)->bitmap, b, c) #define CK_BITMAP_BITS(a) \ ck_bitmap_bits(&(a)->bitmap) #define CK_BITMAP_BUFFER(a) \ ck_bitmap_buffer(&(a)->bitmap) #define CK_BITMAP(a) \ (&(a)->bitmap) struct ck_bitmap { unsigned int n_bits; unsigned int map[]; }; typedef struct ck_bitmap ck_bitmap_t; struct ck_bitmap_iterator { unsigned int cache; unsigned int n_block; unsigned int n_limit; }; typedef struct ck_bitmap_iterator ck_bitmap_iterator_t; CK_CC_INLINE static unsigned int ck_bitmap_base(unsigned int n_bits) { return CK_BITMAP_BLOCKS(n_bits) * sizeof(unsigned int); } /* * Returns the required number of bytes for a ck_bitmap_t object supporting the * specified number of bits. */ CK_CC_INLINE static unsigned int ck_bitmap_size(unsigned int n_bits) { return ck_bitmap_base(n_bits) + sizeof(struct ck_bitmap); } /* * Returns total number of bits in specified bitmap. */ CK_CC_INLINE static unsigned int ck_bitmap_bits(const struct ck_bitmap *bitmap) { return bitmap->n_bits; } /* * Returns a pointer to the bit buffer associated * with the specified bitmap. */ CK_CC_INLINE static void * ck_bitmap_buffer(struct ck_bitmap *bitmap) { return bitmap->map; } /* * Sets the bit at the offset specified in the second argument. */ CK_CC_INLINE static void ck_bitmap_set(struct ck_bitmap *bitmap, unsigned int n) { ck_pr_or_uint(CK_BITMAP_PTR(bitmap->map, n), CK_BITMAP_BIT(n)); return; } /* * Performs a test-and-set operation at the offset specified in the * second argument. * Returns true if the bit at the specified offset was already set, * false otherwise. */ CK_CC_INLINE static bool ck_bitmap_bts(struct ck_bitmap *bitmap, unsigned int n) { return ck_pr_bts_uint(CK_BITMAP_PTR(bitmap->map, n), CK_BITMAP_OFFSET(n)); } /* * Resets the bit at the offset specified in the second argument. */ CK_CC_INLINE static void ck_bitmap_reset(struct ck_bitmap *bitmap, unsigned int n) { ck_pr_and_uint(CK_BITMAP_PTR(bitmap->map, n), ~CK_BITMAP_BIT(n)); return; } /* * Determines whether the bit at offset specified in the * second argument is set. */ CK_CC_INLINE static bool ck_bitmap_test(const struct ck_bitmap *bitmap, unsigned int n) { unsigned int block; block = ck_pr_load_uint(CK_BITMAP_PTR(bitmap->map, n)); return block & CK_BITMAP_BIT(n); } /* * Combines bits from second bitmap into the first bitmap. This is not a * linearized operation with respect to the complete bitmap. */ CK_CC_INLINE static void ck_bitmap_union(struct ck_bitmap *dst, const struct ck_bitmap *src) { unsigned int n; unsigned int n_buckets = dst->n_bits; if (src->n_bits < dst->n_bits) n_buckets = src->n_bits; n_buckets = CK_BITMAP_BLOCKS(n_buckets); for (n = 0; n < n_buckets; n++) { ck_pr_or_uint(&dst->map[n], ck_pr_load_uint(&src->map[n])); } return; } /* * Intersects bits from second bitmap into the first bitmap. This is * not a linearized operation with respect to the complete bitmap. * Any trailing bit in dst is cleared. */ CK_CC_INLINE static void ck_bitmap_intersection(struct ck_bitmap *dst, const struct ck_bitmap *src) { unsigned int n; unsigned int n_buckets = dst->n_bits; unsigned int n_intersect = n_buckets; if (src->n_bits < n_intersect) n_intersect = src->n_bits; n_buckets = CK_BITMAP_BLOCKS(n_buckets); n_intersect = CK_BITMAP_BLOCKS(n_intersect); for (n = 0; n < n_intersect; n++) { ck_pr_and_uint(&dst->map[n], ck_pr_load_uint(&src->map[n])); } for (; n < n_buckets; n++) ck_pr_store_uint(&dst->map[n], 0); return; } /* * Intersects the complement of bits from second bitmap into the first * bitmap. This is not a linearized operation with respect to the * complete bitmap. Any trailing bit in dst is left as is. */ CK_CC_INLINE static void ck_bitmap_intersection_negate(struct ck_bitmap *dst, const struct ck_bitmap *src) { unsigned int n; unsigned int n_intersect = dst->n_bits; if (src->n_bits < n_intersect) n_intersect = src->n_bits; n_intersect = CK_BITMAP_BLOCKS(n_intersect); for (n = 0; n < n_intersect; n++) { ck_pr_and_uint(&dst->map[n], (~ck_pr_load_uint(&src->map[n]))); } return; } /* * Resets all bits in the provided bitmap. This is not a linearized * operation in ck_bitmap. */ CK_CC_INLINE static void ck_bitmap_clear(struct ck_bitmap *bitmap) { unsigned int i; unsigned int n_buckets = ck_bitmap_base(bitmap->n_bits) / sizeof(unsigned int); for (i = 0; i < n_buckets; i++) ck_pr_store_uint(&bitmap->map[i], 0); return; } /* * Returns true if the first limit bits in bitmap are cleared. If * limit is greater than the bitmap size, limit is truncated to that * size. */ CK_CC_INLINE static bool ck_bitmap_empty(const ck_bitmap_t *bitmap, unsigned int limit) { unsigned int i, words, slop; if (limit > bitmap->n_bits) limit = bitmap->n_bits; words = limit / CK_BITMAP_BLOCK; slop = limit % CK_BITMAP_BLOCK; for (i = 0; i < words; i++) { if (ck_pr_load_uint(&bitmap->map[i]) != 0) { return false; } } if (slop > 0) { unsigned int word; word = ck_pr_load_uint(&bitmap->map[i]); if ((word & ((1U << slop) - 1)) != 0) return false; } return true; } /* * Returns true if the first limit bits in bitmap are set. If limit * is greater than the bitmap size, limit is truncated to that size. */ CK_CC_UNUSED static bool ck_bitmap_full(const ck_bitmap_t *bitmap, unsigned int limit) { unsigned int i, slop, words; if (limit > bitmap->n_bits) { limit = bitmap->n_bits; } words = limit / CK_BITMAP_BLOCK; slop = limit % CK_BITMAP_BLOCK; for (i = 0; i < words; i++) { if (ck_pr_load_uint(&bitmap->map[i]) != -1U) return false; } if (slop > 0) { unsigned int word; word = ~ck_pr_load_uint(&bitmap->map[i]); if ((word & ((1U << slop) - 1)) != 0) return false; } return true; } /* * Returns the number of set bit in bitmap, upto (and excluding) * limit. If limit is greater than the bitmap size, it is truncated * to that size. */ CK_CC_INLINE static unsigned int ck_bitmap_count(const ck_bitmap_t *bitmap, unsigned int limit) { unsigned int count, i, slop, words; if (limit > bitmap->n_bits) limit = bitmap->n_bits; words = limit / CK_BITMAP_BLOCK; slop = limit % CK_BITMAP_BLOCK; for (i = 0, count = 0; i < words; i++) count += ck_cc_popcount(ck_pr_load_uint(&bitmap->map[i])); if (slop > 0) { unsigned int word; word = ck_pr_load_uint(&bitmap->map[i]); count += ck_cc_popcount(word & ((1U << slop) - 1)); } return count; } /* * Returns the number of set bit in the intersection of two bitmaps, * upto (and excluding) limit. If limit is greater than either bitmap * size, it is truncated to the smallest. */ CK_CC_INLINE static unsigned int ck_bitmap_count_intersect(const ck_bitmap_t *x, const ck_bitmap_t *y, unsigned int limit) { unsigned int count, i, slop, words; if (limit > x->n_bits) limit = x->n_bits; if (limit > y->n_bits) limit = y->n_bits; words = limit / CK_BITMAP_BLOCK; slop = limit % CK_BITMAP_BLOCK; for (i = 0, count = 0; i < words; i++) { unsigned int xi, yi; xi = ck_pr_load_uint(&x->map[i]); yi = ck_pr_load_uint(&y->map[i]); count += ck_cc_popcount(xi & yi); } if (slop > 0) { unsigned int word, xi, yi; xi = ck_pr_load_uint(&x->map[i]); yi = ck_pr_load_uint(&y->map[i]); word = xi & yi; count += ck_cc_popcount(word & ((1U << slop) - 1)); } return count; } /* * Initializes a ck_bitmap pointing to a region of memory with * ck_bitmap_size(n_bits) bytes. Third argument determines whether * default bit value is 1 (true) or 0 (false). */ CK_CC_INLINE static void ck_bitmap_init(struct ck_bitmap *bitmap, unsigned int n_bits, bool set) { unsigned int base = ck_bitmap_base(n_bits); bitmap->n_bits = n_bits; memset(bitmap->map, -(int)set, base); if (set == true) { unsigned int b = n_bits % CK_BITMAP_BLOCK; if (b == 0) return; *CK_BITMAP_PTR(bitmap->map, n_bits - 1) &= (1U << b) - 1U; } return; } /* * Initialize iterator for use with provided bitmap. */ CK_CC_INLINE static void ck_bitmap_iterator_init(struct ck_bitmap_iterator *i, const struct ck_bitmap *bitmap) { i->n_block = 0; i->n_limit = CK_BITMAP_BLOCKS(bitmap->n_bits); if (i->n_limit > 0) { i->cache = ck_pr_load_uint(&bitmap->map[0]); } else { i->cache = 0; } return; } /* * Iterate to next bit. */ CK_CC_INLINE static bool ck_bitmap_next(const struct ck_bitmap *bitmap, struct ck_bitmap_iterator *i, unsigned int *bit) { unsigned int cache = i->cache; unsigned int n_block = i->n_block; unsigned int n_limit = i->n_limit; if (cache == 0) { if (n_block >= n_limit) return false; for (n_block++; n_block < n_limit; n_block++) { cache = ck_pr_load_uint(&bitmap->map[n_block]); if (cache != 0) goto non_zero; } i->cache = 0; i->n_block = n_block; return false; } non_zero: *bit = CK_BITMAP_BLOCK * n_block + ck_cc_ctz(cache); i->cache = cache & (cache - 1); i->n_block = n_block; return true; } #endif /* CK_BITMAP_H */