Pointer packing is now disabled by default for x86_64 targets.
Jeffrey M. Birnbaum <jmbny.@...> told me that according to his
discussions with Intel engineers, Haswell will be bumping up
VMA bits to 56 bits from 48.
If you control the hardware that CK is deployed to and don't
envision a migration to 48-bits anytime soon, then you may
enable old behavior (resulting in significant memory savings
for some data structures, namely ck_ht) by passing the
--enable-pointer-packing flag to configure.
Migrate available block list to CK_LIST.
New blocks are only allocated when the available list is exhausted.
Remove bag->avail_tail.
Print out number of writer iterations for unit test.
Lengthen duration of unit test.
This changes comes at the cost of clear linearizability, which
is suitable for my use-case. Users can easily implement linereazability
through an additional level of indirection to the ck_bitmap object.
Add necessary load fence to iterator.
Initialize iterator appropriately for empty bags.
Improve unit test.
Fix bag linkage bug for non x86_64 targets.
Fix block accounting on removal.
Specifically, any platform that has CK support for 64-bit
load/store operations.
Additional improvements have been made to the unit tests
to disambiguate put/get failures.
This is a hash table that is optimized for architectures that
implement total store ordering and workloads that are read-heavy
involving a single writer and multiple readers. Unlike traditional
non-blocking multi-producer/multi-consumer hash table
implementations this version allows for immediate re-use of deleted
buckets (no need for explicit reclamation cycles) and is more
conducive to traditional safe memory reclamation schemes used in
unmanaged languages (otherwise, we would require key duplication).
It is relatively heavy-weight for MPMC workloads on architectures
which do not implement TSO in comparison to Click's MPMC hash
table. However, it still has better performance characteristics
than a blocking hash table.
The committed version currently only provides x86_64 support. This is
being committed for review by peers and for a silent release that will
allow us to test ck_ht_spmc under high production workloads.
Next public release will include additional documentation as well as
support for other architectures.
In the mean time, please see the unit tests for example usage. Included in
this commit: Dropped -Wbad-function-cast from GCC port.
We shouldn't offload the responsibility of the read_begin flush
for shared data mutations to the user. read_end requires a load
barrier at the least, not a store barrier.
Writer-side synchronization is still necessary. My current use-cases call for
SLIST and LIST implementations, and as such, I've only implemented support
for these. TAILQ facilities will be developed when the time comes that I require
them or if there is sufficient user-demand.
Several users in the past have noted it was difficult for them
to decide what spinlock implementation to use. In light of this,
a light-weight greedy default is chosen (currently ck_spinlock_fas).