/* * Programming introduction with the SOD Embedded Image Processing API. * Copyright (C) PixLab | Symisc Systems, https://sod.pixlab.io */ /* * Compile this file together with the SOD embedded source code to generate * the executable. For example: * * gcc sod.c license_plate_detection.c -lm -Ofast -march=native -Wall -std=c99 -o sod_img_proc * * Under Microsoft Visual Studio (>= 2015), just drop `sod.c` and its accompanying * header files on your source tree and you're done. If you have any trouble * integrating SOD in your project, please submit a support request at: * https://sod.pixlab.io/support.html */ /* * This simple program is a quick introduction on how to embed and start * experimenting with SOD without having to do a lot of tedious * reading and configuration. * * Make sure you have the latest release of SOD from: * https://pixlab.io/downloads * The SOD Embedded C/C++ documentation is available at: * https://sod.pixlab.io/api.html */ #include #include "sod.h" /* * Frontal License Plate detection without deep-learning. Only image processing code. */ static int filter_cb(int width, int height) { /* A filter callback invoked by the blob routine each time * a potential blob region is identified. * We use the `width` and `height` parameters supplied * to discard regions of non interest (i.e. too big or too small). */ if ((width > 300 && height > 200) || width < 45 || height < 45) { /* Ignore small or big boxes (You should take in consideration * U.S plate size here and adjust accordingly). */ return 0; /* Discarded region */ } return 1; /* Accepted region */ } int main(int argc, char *argv[]) { /* Input image (pass a path or use the test image shipped with the samples ZIP archive) */ const char *zInput = argc > 1 ? argv[1] : "./plate.jpg"; /* Processed output image path */ const char *zOut = argc > 2 ? argv[2] : "./out_plate.png"; /* Load the input image in the grayscale colorspace */ sod_img imgIn = sod_img_load_grayscale(zInput); if (imgIn.data == 0) { /* Invalid path, unsupported format, memory failure, etc. */ puts("Cannot load input image..exiting"); return 0; } /* A full color copy of the input image so we can draw rose boxes * marking the plate in question if any. */ sod_img imgCopy = sod_img_load_color(zInput); /* Obtain a binary image first */ sod_img binImg = sod_threshold_image(imgIn, 0.5); /* * Perform Canny edge detection next which is a mandatory step */ sod_img cannyImg = sod_canny_edge_image(binImg, 1/* Reduce noise */); /* * Dilate the image say 12 times but you should experiment * with different values for best results which depend * on the quality of the input image/frame. */ sod_img dilImg = sod_dilate_image(cannyImg, 12); /* Perform connected component labeling or blob detection * now on the binary, canny edged, Gaussian noise reduced and * finally dilated image using our filter callback that should * discard small or large rectangle areas. */ sod_box *box = 0; int i, nbox; sod_image_find_blobs(dilImg, &box, &nbox, filter_cb); /* Draw a box on each potential plate coordinates */ for (i = 0; i < nbox; i++) { sod_image_draw_bbox_width(imgCopy, box[i], 5, 255., 0, 225.); // rose box } sod_image_blob_boxes_release(box); /* Finally save the output image to the specified path */ sod_img_save_as_png(imgCopy, zOut); /* Cleanup */ sod_free_image(imgIn); sod_free_image(cannyImg); sod_free_image(binImg); sod_free_image(dilImg); sod_free_image(imgCopy); return 0; }