Blob detection via connected component labeling

main
Symisc Systems 7 years ago committed by GitHub
parent 3fadb5e256
commit 75ba420007
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,88 @@
/*
* Programming introduction with the SOD Embedded Image Processing API.
* Copyright (C) PixLab | Symisc Systems, https://sod.pixlab.io
*/
/*
* Compile this file together with the SOD embedded source code to generate
* the executable. For example:
*
* gcc sod.c blob_detection.c -lm -Ofast -march=native -Wall -std=c99 -o sod_img_proc
*
* Under Microsoft Visual Studio (>= 2015), just drop `sod.c` and its accompanying
* header files on your source tree and you're done. If you have any trouble
* integrating SOD in your project, please submit a support request at:
* https://sod.pixlab.io/support.html
*/
/*
* This simple program is a quick introduction on how to embed and start
* experimenting with SOD without having to do a lot of tedious
* reading and configuration.
*
* Make sure you have the latest release of SOD from:
* https://pixlab.io/downloads
* The SOD Embedded C/C++ documentation is available at:
* https://sod.pixlab.io/api.html
*/
#include <stdio.h>
#include "sod.h"
static int filter_cb(int width, int height)
{
/* A filter callback invoked by the blob routine each time
* a potential blob region is identified.
* We use the `width` and `height` parameters supplied
* to discard regions of non interest (i.e. too big or too small).
*/
if ((width > 300 && height > 300) || width < 35 || height < 35) {
/* Ignore small or big boxes */
return 0;
}
return 1; /* Region accepted */
}
/*
* Perform connected component labeling on an input binary image
* which is useful for finding blobs (i.e. bloc of texts).
*/
int main(int argc, char *argv[])
{
/* Input image (pass a path or use the test image shipped with the samples ZIP archive) */
const char *zInput = argc > 1 ? argv[1] : "./text.jpg";
/* Processed output image path */
const char *zOut = argc > 2 ? argv[2] : "./out_blobs.png";
/* Load the input image in the grayscale colorspace */
sod_img imgIn = sod_img_load_grayscale(zInput);
if (imgIn.data == 0) {
/* Invalid path, unsupported format, memory failure, etc. */
puts("Cannot load input image..exiting");
return 0;
}
/* A full color copy of the input image so we can draw rose rectangles on blobs.
* Note that drawing on grayscale images is also possible via
* sod_image_draw_box_grayscale()
*/
sod_img imgCopy = sod_img_load_color(zInput);
/*
* Binarize the input image before the dilation process.
*/
sod_img binImg = sod_binarize_image(imgIn, 0);
/* Dilate the binary image, say 12 times */
sod_img dilImg = sod_dilate_image(binImg, 12);
/* Perform the blob detection process on our dilated image */
sod_box *box = 0;
int i, nbox;
sod_image_find_blobs(dilImg, &box, &nbox, filter_cb /* Our filter callback to discard small and big regions*/);
/*
* Draw a rectangle on each extracted & validated blob region.
*/
for (i = 0; i < nbox; i++) {
sod_image_draw_bbox_width(imgCopy, box[i], 5, 255., 0, 225.); /* rose box */
}
/* Finally save the output image to the specified path */
sod_img_save_as_png(imgCopy, zOut);
/* Cleanup */
sod_image_blob_boxes_release(box);
sod_free_image(imgIn);
sod_free_image(binImg);
sod_free_image(dilImg);
sod_free_image(imgCopy);
return 0;
}
Loading…
Cancel
Save