Perform Hilditch thinning on an input image.

* Skeletonization is useful when we are interested not in the size of the pattern but rather
 * in the relative position of the strokes in the pattern (Character Recognition,
 *  X, Y Chromosome Recognition, etc.).
 * The target image must be binary (i.e. images whose pixels have only two possible intensity
 * value mostly black or white). You can obtain a binary image via sod_canny_edge_image(),
 * sod_otsu_binarize_image(), sod_binarize_image() or sod_threshold_image().
main
Symisc Systems 7 years ago committed by GitHub
parent 4a9e9ba3e5
commit 311842404c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,62 @@
/*
* Programming introduction with the SOD Embedded Image Processing API.
* Copyright (C) PixLab | Symisc Systems, https://sod.pixlab.io
*/
/*
* Compile this file together with the SOD embedded source code to generate
* the executable. For example:
*
* gcc sod.c hilditch_thin.c -lm -Ofast -march=native -Wall -std=c99 -o sod_img_proc
*
* Under Microsoft Visual Studio (>= 2015), just drop `sod.c` and its accompanying
* header files on your source tree and you're done. If you have any trouble
* integrating SOD in your project, please submit a support request at:
* https://sod.pixlab.io/support.html
*/
/*
* This simple program is a quick introduction on how to embed and start
* experimenting with SOD without having to do a lot of tedious
* reading and configuration.
*
* Make sure you have the latest release of SOD from:
* https://pixlab.io/downloads
* The SOD Embedded C/C++ documentation is available at:
* https://sod.pixlab.io/api.html
*/
#include <stdio.h>
#include "sod.h"
/*
* Perform Hilditch thinning on an input image.
*
* Skeletonization is useful when we are interested not in the size of the pattern but rather
* in the relative position of the strokes in the pattern (Character Recognition,
* X, Y Chromosome Recognition, etc.).
* The target image must be binary (i.e. images whose pixels have only two possible intensity
* value mostly black or white). You can obtain a binary image via sod_canny_edge_image(),
* sod_otsu_binarize_image(), sod_binarize_image() or sod_threshold_image().
*/
int main(int argc, char *argv[])
{
/* Input image (pass a path or use the test image shipped with the samples ZIP archive) */
const char *zInput = argc > 1 ? argv[1] : "./acgt.png";
/* Processed output image path */
const char *zOut = argc > 2 ? argv[2] : "./out_hilditch.png";
/* Load the input image in the grayscale colorspace */
sod_img imgIn = sod_img_load_from_file(zInput, SOD_IMG_GRAYSCALE/* single channel colorspace (gray)*/);
if (imgIn.data == 0) {
/* Invalid path, unsupported format, memory failure, etc. */
puts("Cannot load input image..exiting");
return 0;
}
/* Binarize the input image before the thinning process */
sod_img binImg = sod_threshold_image(imgIn, 0.5);
/* Perform Hilditch thinning on this binary image. */
sod_img imgOut = sod_hilditch_thin_image(binImg);
/* Finally save our processed image to the specified path */
sod_img_save_as_png(imgOut, zOut);
/* Cleanup */
sod_free_image(imgIn);
sod_free_image(binImg);
sod_free_image(imgOut);
return 0;
}
Loading…
Cancel
Save