From 0a15df1b36eae63d71780f2b2caa32c39c1a8433 Mon Sep 17 00:00:00 2001 From: Symisc Systems Date: Tue, 5 Jun 2018 04:10:33 +0200 Subject: [PATCH] CNN mult-class object detection (COCO) --- samples/cnn_coco.c | 109 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 samples/cnn_coco.c diff --git a/samples/cnn_coco.c b/samples/cnn_coco.c new file mode 100644 index 0000000..437d514 --- /dev/null +++ b/samples/cnn_coco.c @@ -0,0 +1,109 @@ +/* + * Programming introduction with the SOD Embedded Convolutional/Recurrent Neural Networks (CNN/RNN) API. + * Copyright (C) PixLab | Symisc Systems, https://sod.pixlab.io + */ +/* +* Compile this file together with the SOD embedded source code to generate +* the executable. For example: +* +* gcc sod.c cnn_coco.c -lm -Ofast -march=native -Wall -std=c99 -o sod_cnn_intro +* +* Under Microsoft Visual Studio (>= 2015), just drop `sod.c` and its accompanying +* header files on your source tree and you're done. If you have any trouble +* integrating SOD in your project, please submit a support request at: +* https://sod.pixlab.io/support.html +*/ +/* +* This simple program is a quick introduction on how to embed and start +* experimenting with SOD without having to do a lot of tedious +* reading and configuration. +* +* Make sure you have the latest release of SOD from: +* https://pixlab.io/downloads +* The SOD Embedded C/C++ documentation is available at: +* https://sod.pixlab.io/api.html +*/ +#include +#include "sod.h" +int main(int argc, char *argv[]) +{ + /* Input image (pass a path or use the test image shipped with the samples ZIP archive) */ + const char *zInput = argc > 1 ? argv[1] : "./test.png"; + /* Draw detection boxes (i.e. rectangles) on this output image which + * is a copy of the input plus the boxes. + */ + const char *zOut = argc > 2 ? argv[2] : "./out.png"; + /* + * The CNN handle that should perform the detection process */ + sod_cnn *pNet; + /* Load the input image */ + sod_img imgIn = sod_img_load_from_file(zInput,SOD_IMG_COLOR/* Full colors*/); + if (imgIn.data == 0) { + /* Invalid path, unsupported format, memory failure, etc. */ + puts("Cannot load input image..exiting"); + return 0; + } + /* Make a copy so we can draw anything we want. */ + sod_img imgOut = sod_copy_image(imgIn); + int rc; + const char *zErr; /* Error log if any */ + /* + * Create our CNN handle using the built-in fast + * architecture trained on the MS COCO dataset + * and is able to detect 80 classes of objects at + * real-time on a modern CPU. + */ + rc = sod_cnn_create(&pNet, ":coco", "./tiny80.sod", &zErr); + /* + * ":coco" is the magic word for the built-in MS COCO (80 classes) + * fast architecture. The list of built-in Magic words (pre-ready to use + * configurations and their associated models) are documented here: + * https://sod.pixlab.io/c_api/sod_cnn_create.html. + * + * "tiny80.sod" is the pre-trained model associated with the ":coco" architecture + * and is available to download from https://pixlab.io/downloads + */ + if (rc != SOD_OK) { + /* Display the error message and exit */ + puts(zErr); + return 0; + } + /* + * A sod_box instance always store the coordinates for each detected object + * returned by the CNN via sod_cnn_predict() as we'll see later. + */ + sod_box *box; + int i, nbox; + /* Prepare our input image for the detection process which + * is resized to the network dimension (This op is always very fast) + */ + float * blob = sod_cnn_prepare_image(pNet, imgIn); + if (!blob) { + /* Very unlikely this happen: Invalid architecture, out-of-memory */ + puts("Something went wrong while preparing image.."); + return 0; + } + puts("Starting CNN object detection"); + /* Detect.. */ + sod_cnn_predict(pNet, blob, &box, &nbox); + /* Report the detection result. */ + printf("%d object(s) were detected..\n",nbox); + for (i = 0; i < nbox; i++) { + /* Report the coordinates, name and score of the current detected object */ + printf("(%s) X:%d Y:%d Width:%d Height:%d score:%f%%\n", box[i].zName, box[i].x, box[i].y, box[i].w, box[i].h, box[i].score * 100); + if( box[i].score < 0.3) continue; /* Discard low score detection, remove if you want to report all objects */ + /* + * Draw a rose (RGB: 255,0,255) rectangle of width 3 on the object coordinates. */ + sod_image_draw_bbox_width(imgOut, box[i], 3, 255., 0, 225.); + /* Of course, one could draw a circle via sod_image_draw_circle() or + * crop the entire region via sod_crop_image() instead of drawing a rectangle. */ + } + /* Finally save our output image with the boxes drawn on it */ + sod_img_save_as_png(imgOut, zOut); + /* Cleanup */ + sod_free_image(imgIn); + sod_free_image(imgOut); + /* Release all resources allocated to the CNN handle */ + sod_cnn_destroy(pNet); + return 0; +} \ No newline at end of file